Nuprl Lemma : alt-swap-spec_wf2
∀[n:ℕ]. ∀[AType:array{i:l}(ℤ;n)]. ∀[prog:ℕn ⟶ ℕn ⟶ (A-map Unit)]. ∀[i,j:ℕn].  (alt-swap-spec(AType;n;prog) ∈ ℙ)
Proof
Definitions occuring in Statement : 
alt-swap-spec: alt-swap-spec(AType;n;prog)
, 
A-map: A-map
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
alt-swap-spec: alt-swap-spec(AType;n;prog)
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
prop: ℙ
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
Arr_wf, 
int_seg_wf, 
equal_wf, 
A-post-val_wf, 
A-pre-val_wf, 
not_wf, 
A-map_wf, 
unit_wf2, 
array_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
productEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(\mBbbZ{};n)].  \mforall{}[prog:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n  {}\mrightarrow{}  (A-map  Unit)].  \mforall{}[i,j:\mBbbN{}n].
    (alt-swap-spec(AType;n;prog)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_01-AM-08_44_36
Last ObjectModification:
2017_07_26-PM-04_30_16
Theory : monads
Home
Index