Nuprl Lemma : alt-swap-spec_wf2

[n:ℕ]. ∀[AType:array{i:l}(ℤ;n)]. ∀[prog:ℕn ⟶ ℕn ⟶ (A-map Unit)]. ∀[i,j:ℕn].  (alt-swap-spec(AType;n;prog) ∈ ℙ)


Proof




Definitions occuring in Statement :  alt-swap-spec: alt-swap-spec(AType;n;prog) A-map: A-map array-model: array-model(AType) array: array{i:l}(Val;n) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: unit: Unit member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T alt-swap-spec: alt-swap-spec(AType;n;prog) so_lambda: λ2x.t[x] nat: prop: and: P ∧ Q implies:  Q int_seg: {i..j-} so_apply: x[s]
Lemmas referenced :  all_wf Arr_wf int_seg_wf equal_wf A-post-val_wf A-pre-val_wf not_wf A-map_wf unit_wf2 array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality hypothesis lambdaEquality natural_numberEquality setElimination rename because_Cache productEquality applyEquality functionExtensionality functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(\mBbbZ{};n)].  \mforall{}[prog:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n  {}\mrightarrow{}  (A-map  Unit)].  \mforall{}[i,j:\mBbbN{}n].
    (alt-swap-spec(AType;n;prog)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_01-AM-08_44_36
Last ObjectModification: 2017_07_26-PM-04_30_16

Theory : monads


Home Index