Nuprl Lemma : simple-swap-specification_wf
∀[n:ℕ]. ∀[AType:array{i:l}(ℤ;n)]. ∀[prog:A-map Unit].  ∀i,j:ℕn.  (simple-swap-specification(AType;n;prog;i;j) ∈ ℙ)
Proof
Definitions occuring in Statement : 
simple-swap-specification: simple-swap-specification(AType;n;prog;i;j)
, 
A-map: A-map
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
simple-swap-specification: simple-swap-specification(AType;n;prog;i;j)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
int_seg_wf, 
Arr_wf, 
assert_wf, 
A-eval_wf, 
bool_wf, 
A-map_wf, 
simple-swap-test2_wf, 
unit_wf2, 
array_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
intEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
dependent_functionElimination, 
axiomEquality, 
because_Cache, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(\mBbbZ{};n)].  \mforall{}[prog:A-map  Unit].
    \mforall{}i,j:\mBbbN{}n.    (simple-swap-specification(AType;n;prog;i;j)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-02_20_07
Last ObjectModification:
2015_12_27-AM-08_58_02
Theory : monads
Home
Index