Nuprl Lemma : fps-set-to-one-sub
∀[r:CRng]. ∀[f,g:PowerSeries(r)]. ∀[y:Atom]. ∀[n:ℕ].  ([(f-g)]_n(y:=1) = ([f]_n(y:=1)-[g]_n(y:=1)) ∈ PowerSeries(r))
Proof
Definitions occuring in Statement : 
fps-set-to-one: [f]_n(y:=1)
, 
fps-sub: (f-g)
, 
power-series: PowerSeries(X;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
atom: Atom
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
fps-sub: (f-g)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
power-series_wf, 
fps-set-to-one-add, 
fps-neg_wf, 
fps-add_wf, 
fps-set-to-one_wf, 
iff_weakening_equal, 
crng_wf, 
fps-set-to-one-neg, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
atomEquality, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(r)].  \mforall{}[y:Atom].  \mforall{}[n:\mBbbN{}].    ([(f-g)]\_n(y:=1)  =  ([f]\_n(y:=1)-[g]\_n(y:=1)))
Date html generated:
2018_05_21-PM-10_12_54
Last ObjectModification:
2017_07_26-PM-06_35_12
Theory : power!series
Home
Index