Nuprl Lemma : fps-set-to-one-neg

[r:CRng]. ∀[f:PowerSeries(r)]. ∀[y:Atom]. ∀[n:ℕ].  ([-(f)]_n(y:=1) -([f]_n(y:=1)) ∈ PowerSeries(r))


Proof




Definitions occuring in Statement :  fps-set-to-one: [f]_n(y:=1) fps-neg: -(f) power-series: PowerSeries(X;r) nat: uall: [x:A]. B[x] atom: Atom equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-set-to-one: [f]_n(y:=1) fps-neg: -(f) fps-coeff: f[b] subtype_rel: A ⊆B implies:  Q bool: 𝔹 unit: Unit it: btrue: tt nat: bor: p ∨bq ifthenelse: if then else fi  squash: T prop: crng: CRng rng: Rng true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A power-series: PowerSeries(X;r) ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  fps-ext fps-set-to-one_wf fps-neg_wf lt_int_wf bag-count_wf atom-deq_wf bool_wf eqtt_to_assert assert_of_lt_int nat_wf equal_wf squash_wf true_wf rng_car_wf rng_zero_wf rng_minus_zero iff_weakening_equal eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf bag-size_wf rng_minus_wf bag-append_wf bag-rep_wf subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf list-subtype-bag subtype_rel_self bag_wf power-series_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality atomEquality hypothesis productElimination independent_isectElimination lambdaFormation sqequalRule natural_numberEquality applyEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry lambdaEquality setElimination rename imageElimination imageMemberEquality baseClosed universeEquality independent_functionElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity voidElimination dependent_set_memberEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll axiomEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[f:PowerSeries(r)].  \mforall{}[y:Atom].  \mforall{}[n:\mBbbN{}].    ([-(f)]\_n(y:=1)  =  -([f]\_n(y:=1)))



Date html generated: 2018_05_21-PM-10_12_43
Last ObjectModification: 2017_07_26-PM-06_35_05

Theory : power!series


Home Index