Nuprl Lemma : nat-id-fun-ext
∀n:ℕ. (∃m:ℕ [(m = n ∈ ℕ)])
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
nat-id-fun-example, 
any: any x
, 
decidable__equal_int, 
decidable__int_equal, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
subtract: n - m
, 
int_seg_properties
Lemmas referenced : 
nat-id-fun-example, 
lifting-strict-int_eq, 
top_wf, 
equal_wf, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
decidable__equal_int, 
decidable__int_equal, 
int_seg_properties
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueDecide, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
dependent_functionElimination, 
independent_functionElimination, 
baseApply, 
closedConclusion, 
decideExceptionCases, 
inrFormation, 
because_Cache, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation
Latex:
\mforall{}n:\mBbbN{}.  (\mexists{}m:\mBbbN{}  [(m  =  n)])
Date html generated:
2018_05_21-PM-11_39_15
Last ObjectModification:
2017_07_26-PM-06_42_47
Theory : rationals
Home
Index