Nuprl Lemma : nat-id-fun-example

n:ℕ(∃m:ℕ [(m n ∈ ℕ)])


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] sq_exists: x:A [B[x]] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) nat: sq_exists: x:A [B[x]] ge: i ≥  le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt le_wf less_than_wf subtype_rel_self guard_wf sq_exists_wf nat_wf equal-wf-base primrec-wf2 all_wf nat_properties itermAdd_wf int_term_value_add_lemma istype-false set-value-type equal_wf int-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesisEquality hypothesis setElimination rename productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType unionElimination applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality_alt productIsType hypothesis_subsumption cumulativity intEquality functionIsType setIsType inhabitedIsType addEquality dependent_set_memberFormation_alt equalityIsType4 baseClosed cutEval equalityIsType1 baseApply closedConclusion

Latex:
\mforall{}n:\mBbbN{}.  (\mexists{}m:\mBbbN{}  [(m  =  n)])



Date html generated: 2019_10_16-AM-11_46_52
Last ObjectModification: 2018_10_10-PM-01_24_42

Theory : rationals


Home Index