Nuprl Lemma : nat-id-fun-example
∀n:ℕ. (∃m:ℕ [(m = n ∈ ℕ)])
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
nat: ℕ
, 
sq_exists: ∃x:A [B[x]]
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
Lemmas referenced : 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
le_wf, 
less_than_wf, 
subtype_rel_self, 
guard_wf, 
sq_exists_wf, 
nat_wf, 
equal-wf-base, 
primrec-wf2, 
all_wf, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-false, 
set-value-type, 
equal_wf, 
int-value-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
unionElimination, 
applyEquality, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
hypothesis_subsumption, 
cumulativity, 
intEquality, 
functionIsType, 
setIsType, 
inhabitedIsType, 
addEquality, 
dependent_set_memberFormation_alt, 
equalityIsType4, 
baseClosed, 
cutEval, 
equalityIsType1, 
baseApply, 
closedConclusion
Latex:
\mforall{}n:\mBbbN{}.  (\mexists{}m:\mBbbN{}  [(m  =  n)])
Date html generated:
2019_10_16-AM-11_46_52
Last ObjectModification:
2018_10_10-PM-01_24_42
Theory : rationals
Home
Index