Step
*
1
2
1
2
1
1
2
1
of Lemma
q-not-limit-zero-diverges
.....assertion.....
1. f : ℕ ⟶ ℚ
2. ∀n:ℕ. (0 ≤ f[n])
3. q : ℚ
4. 0 < q
5. B : ℚ
6. N : ℕ
7. B ≤ (N * q)
8. g : ℕ ⟶ ℕ
9. ∀n:ℕ. ((∀i:ℕn. g i < g n) ∧ (q ≤ f[g n]))
10. B ≤ Σ0 ≤ i < N. f[g i]
⊢ Σ0 ≤ i < N. f[g i] ≤ Σ0 ≤ i < g N. f[i]
BY
{ ((Assert ⌜∀n:ℕ. ∀i:ℕn. g i < g n⌝ BY (ParallelOp -2 THEN Auto)) THEN ThinVar `q' THEN ThinVar `B') }
1
1. f : ℕ ⟶ ℚ
2. ∀n:ℕ. (0 ≤ f[n])
3. N : ℕ
4. g : ℕ ⟶ ℕ
5. ∀n:ℕ. ∀i:ℕn. g i < g n
⊢ Σ0 ≤ i < N. f[g i] ≤ Σ0 ≤ i < g N. f[i]
Latex:
Latex:
.....assertion.....
1. f : \mBbbN{} {}\mrightarrow{} \mBbbQ{}
2. \mforall{}n:\mBbbN{}. (0 \mleq{} f[n])
3. q : \mBbbQ{}
4. 0 < q
5. B : \mBbbQ{}
6. N : \mBbbN{}
7. B \mleq{} (N * q)
8. g : \mBbbN{} {}\mrightarrow{} \mBbbN{}
9. \mforall{}n:\mBbbN{}. ((\mforall{}i:\mBbbN{}n. g i < g n) \mwedge{} (q \mleq{} f[g n]))
10. B \mleq{} \mSigma{}0 \mleq{} i < N. f[g i]
\mvdash{} \mSigma{}0 \mleq{} i < N. f[g i] \mleq{} \mSigma{}0 \mleq{} i < g N. f[i]
By
Latex:
((Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n. g i < g n\mkleeneclose{} BY (ParallelOp -2 THEN Auto)) THEN ThinVar `q' THEN ThinVar `B')
Home
Index