Nuprl Lemma : qabs-non-zero

[q:ℚ]. uiff(0 < |q|;¬(q 0 ∈ ℚ))


Proof




Definitions occuring in Statement :  qabs: |r| qless: r < s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B qabs: |r| callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  qpositive: qpositive(r) btrue: tt lt_int: i <j bfalse: ff qmul: s qless: r < s grp_lt: a < b set_lt: a <b assert: b set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) bor: p ∨bq qsub: s qadd: s qeq: qeq(r;s) eq_int: (i =z j) bnot: ¬bb all: x:A. B[x] or: P ∨ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  equal-wf-T-base rationals_wf qless_wf int-subtype-rationals qabs_wf qless_witness not_wf zero-qle-qabs qle-iff qabs-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination hypothesisEquality baseClosed sqequalRule lambdaEquality dependent_functionElimination because_Cache natural_numberEquality applyEquality productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry hyp_replacement Error :applyLambdaEquality,  independent_isectElimination unionElimination

Latex:
\mforall{}[q:\mBbbQ{}].  uiff(0  <  |q|;\mneg{}(q  =  0))



Date html generated: 2016_10_26-AM-06_32_06
Last ObjectModification: 2016_07_12-AM-07_51_11

Theory : rationals


Home Index