Nuprl Lemma : qadd_functionality_wrt_qless

[a,b,c,d:ℚ].  (a c < d) supposing ((c ≤ d) and a < b)


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qadd: s rationals: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  qless_transitivity_1_qorder iff_weakening_equal qadd_com true_wf squash_wf grp_op_preserves_lt_qorder grp_op_preserves_le_qorder rationals_wf qless_wf qle_wf qadd_wf qless_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination natural_numberEquality applyEquality lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality productElimination

Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    (a  +  c  <  b  +  d)  supposing  ((c  \mleq{}  d)  and  a  <  b)



Date html generated: 2016_05_15-PM-11_00_02
Last ObjectModification: 2016_01_16-PM-09_31_06

Theory : rationals


Home Index