Nuprl Lemma : qdiv-one

[q:ℚ]. ((q/1) q ∈ ℚ)


Proof




Definitions occuring in Statement :  qdiv: (r/s) rationals: uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a not: ¬A implies:  Q uiff: uiff(P;Q) and: P ∧ Q qeq: qeq(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) bfalse: ff assert: b false: False prop: squash: T true: True guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  rationals_wf qmul-qdiv-cancel int-subtype-rationals assert-qeq equal-wf-base equal_wf squash_wf true_wf qmul_one_qrng qdiv_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality applyEquality sqequalRule hypothesisEquality independent_isectElimination lambdaFormation equalityTransitivity equalitySymmetry productElimination independent_pairFormation voidElimination baseClosed lambdaEquality imageElimination universeEquality because_Cache imageMemberEquality independent_functionElimination

Latex:
\mforall{}[q:\mBbbQ{}].  ((q/1)  =  q)



Date html generated: 2018_05_21-PM-11_51_17
Last ObjectModification: 2017_07_26-PM-06_44_26

Theory : rationals


Home Index