Nuprl Lemma : qexp-positive-iff

n:ℕ. ∀r:ℚ.  (0 < r ↑ ⇐⇒ (n 0 ∈ ℤ) ∨ 0 < r ∨ (r < 0 ∧ (↑isEven(n))))


Proof




Definitions occuring in Statement :  qexp: r ↑ n qless: r < s rationals: isEven: isEven(n) nat: assert: b all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q implies:  Q prop: uall: [x:A]. B[x] nat: subtype_rel: A ⊆B rev_implies:  Q or: P ∨ Q
Lemmas referenced :  nat_wf rationals_wf equal-wf-T-base iff_wf qexp_wf int-subtype-rationals isEven_wf assert_wf and_wf qless_wf equal_wf or_wf qexp-sign
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_pairFormation isectElimination intEquality setElimination rename natural_numberEquality applyEquality because_Cache sqequalRule addLevel impliesFunctionality independent_functionElimination baseClosed productEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}r:\mBbbQ{}.    (0  <  r  \muparrow{}  n  \mLeftarrow{}{}\mRightarrow{}  (n  =  0)  \mvee{}  0  <  r  \mvee{}  (r  <  0  \mwedge{}  (\muparrow{}isEven(n))))



Date html generated: 2016_05_15-PM-11_09_10
Last ObjectModification: 2016_01_16-PM-09_25_50

Theory : rationals


Home Index