Nuprl Lemma : qexp-sign

n:ℕ. ∀r:ℚ.
  ((0 < r ↑ ⇐⇒ (n 0 ∈ ℤ) ∨ 0 < r ∨ (r < 0 ∧ (↑isEven(n))))
  ∧ (r ↑ n < ⇐⇒ r < 0 ∧ (↑isOdd(n)))
  ∧ (r ↑ 0 ∈ ℚ ⇐⇒ (r 0 ∈ ℚ) ∧ (n 0 ∈ ℤ))))


Proof




Definitions occuring in Statement :  qexp: r ↑ n qless: r < s rationals: isEven: isEven(n) isOdd: isOdd(n) nat: assert: b all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] subtype_rel: A ⊆B nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] isOdd: isOdd(n) isEven: isEven(n) qless: r < s grp_lt: a < b set_lt: a <b assert: b ifthenelse: if then else fi  set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s btrue: tt lt_int: i <j bnot: ¬bb bfalse: ff qeq: qeq(r;s) eq_int: (i =z j) true: True modulus: mod n absval: |i| cand: c∧ B uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} nat_plus: +
Lemmas referenced :  rationals_wf qless_wf qexp_wf subtract_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf int_subtype_base assert_wf isEven_wf isOdd_wf less_than_wf primrec-wf2 all_wf iff_wf or_wf equal-wf-base equal-wf-T-base not_wf nat_wf exp_zero_q true_wf int-equal-in-rationals subtype_base_sq assert-qeq intformeq_wf int_formula_prop_eq_lemma int-subtype-rationals exp_unroll_q odd-implies subtract-add-cancel even-implies qmul-positive2 qmul-negative qmul-zero qless_transitivity qless_irreflexivity decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin universeIsType introduction extract_by_obid hypothesis rename setElimination because_Cache sqequalRule functionIsType productIsType sqequalHypSubstitution isectElimination natural_numberEquality applyEquality hypothesisEquality dependent_set_memberEquality_alt dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation unionIsType equalityIsType4 inhabitedIsType baseApply closedConclusion baseClosed productElimination equalityIsType3 setIsType productEquality callbyvalueReduce sqleReflexivity inlFormation_alt instantiate cumulativity intEquality equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality inrFormation_alt promote_hyp

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}r:\mBbbQ{}.
    ((0  <  r  \muparrow{}  n  \mLeftarrow{}{}\mRightarrow{}  (n  =  0)  \mvee{}  0  <  r  \mvee{}  (r  <  0  \mwedge{}  (\muparrow{}isEven(n))))
    \mwedge{}  (r  \muparrow{}  n  <  0  \mLeftarrow{}{}\mRightarrow{}  r  <  0  \mwedge{}  (\muparrow{}isOdd(n)))
    \mwedge{}  (r  \muparrow{}  n  =  0  \mLeftarrow{}{}\mRightarrow{}  (r  =  0)  \mwedge{}  (\mneg{}(n  =  0))))



Date html generated: 2019_10_16-PM-00_32_02
Last ObjectModification: 2018_10_10-PM-01_06_56

Theory : rationals


Home Index