Nuprl Lemma : qmul-negative

a,b:ℚ.  ((a < 0 ∧ 0 < b) ∨ (0 < a ∧ b < 0) ⇐⇒ b < 0)


Proof




Definitions occuring in Statement :  qless: r < s qmul: s rationals: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: uall: [x:A]. B[x] subtype_rel: A ⊆B rev_implies:  Q uimplies: supposing a qless: r < s grp_lt: a < b set_lt: a <b assert: b ifthenelse: if then else fi  set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s btrue: tt lt_int: i <j bnot: ¬bb bfalse: ff qeq: qeq(r;s) eq_int: (i =z j) true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T guard: {T} or: P ∨ Q
Lemmas referenced :  qmul-positive2 and_wf or_wf iff_wf iff_weakening_equal qinv_inv_q qmul_zero_qrng qmul_over_minus_qrng true_wf squash_wf int-subtype-rationals qmul_reverses_qless qmul_wf qless_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid hypothesis independent_pairFormation sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality applyEquality because_Cache sqequalRule minusEquality independent_isectElimination productElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality independent_functionElimination addLevel impliesFunctionality unionElimination inlFormation promote_hyp inrFormation dependent_functionElimination productEquality

Latex:
\mforall{}a,b:\mBbbQ{}.    ((a  <  0  \mwedge{}  0  <  b)  \mvee{}  (0  <  a  \mwedge{}  b  <  0)  \mLeftarrow{}{}\mRightarrow{}  a  *  b  <  0)



Date html generated: 2016_05_15-PM-11_00_58
Last ObjectModification: 2016_01_16-PM-09_33_10

Theory : rationals


Home Index