Nuprl Lemma : qmin-list_wf
∀[L:ℚ List]. qmin-list(L) ∈ ℚ supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
qmin-list: qmin-list(L)
, 
rationals: ℚ
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
qmin-list: qmin-list(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
Lemmas referenced : 
combine-list_wf, 
rationals_wf, 
qmin_wf, 
less_than_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[L:\mBbbQ{}  List].  qmin-list(L)  \mmember{}  \mBbbQ{}  supposing  0  <  ||L||
Date html generated:
2016_05_15-PM-10_43_17
Last ObjectModification:
2015_12_27-PM-07_56_14
Theory : rationals
Home
Index