Nuprl Lemma : qmul_reverses_qle2

[a,b,c:ℚ].  uiff(a ≤ b;(b c) ≤ (a c)) supposing c < 0


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qmul: s rationals: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q implies:  Q prop: subtype_rel: A ⊆B true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  iff_weakening_equal qmul_com true_wf squash_wf rationals_wf int-subtype-rationals qless_wf qle_wf qmul_wf qle_witness qmul_reverses_qle
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination independent_pairFormation isect_memberFormation introduction independent_functionElimination because_Cache natural_numberEquality applyEquality sqequalRule independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    uiff(a  \mleq{}  b;(b  *  c)  \mleq{}  (a  *  c))  supposing  c  <  0



Date html generated: 2016_05_15-PM-10_59_46
Last ObjectModification: 2016_01_16-PM-09_31_44

Theory : rationals


Home Index