Nuprl Lemma : qv-constrained_wf

[n:ℕ]. ∀[S:q-linear-form(n) List]. ∀[p:ℚ^n].  (qv-constrained(S;p) ∈ ℙ)


Proof




Definitions occuring in Statement :  qv-constrained: qv-constrained(S;p) q-linear-form: q-linear-form(n) qvn: ^n list: List nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qv-constrained: qv-constrained(S;p) so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  l_all_wf2 q-linear-form_wf qv-lower_wf l_member_wf qvn_wf list_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality setElimination rename setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[S:q-linear-form(n)  List].  \mforall{}[p:\mBbbQ{}\^{}n].    (qv-constrained(S;p)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-11_22_28
Last ObjectModification: 2015_12_27-PM-07_32_06

Theory : rationals


Home Index