Nuprl Lemma : qv-constrained_wf
∀[n:ℕ]. ∀[S:q-linear-form(n) List]. ∀[p:ℚ^n]. (qv-constrained(S;p) ∈ ℙ)
Proof
Definitions occuring in Statement :
qv-constrained: qv-constrained(S;p)
,
q-linear-form: q-linear-form(n)
,
qvn: ℚ^n
,
list: T List
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
qv-constrained: qv-constrained(S;p)
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
so_apply: x[s]
Lemmas referenced :
l_all_wf2,
q-linear-form_wf,
qv-lower_wf,
l_member_wf,
qvn_wf,
list_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaEquality,
setElimination,
rename,
setEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[S:q-linear-form(n) List]. \mforall{}[p:\mBbbQ{}\^{}n]. (qv-constrained(S;p) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-11_22_28
Last ObjectModification:
2015_12_27-PM-07_32_06
Theory : rationals
Home
Index