Nuprl Lemma : qv-constrained_wf
∀[n:ℕ]. ∀[S:q-linear-form(n) List]. ∀[p:ℚ^n].  (qv-constrained(S;p) ∈ ℙ)
Proof
Definitions occuring in Statement : 
qv-constrained: qv-constrained(S;p)
, 
q-linear-form: q-linear-form(n)
, 
qvn: ℚ^n
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qv-constrained: qv-constrained(S;p)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
l_all_wf2, 
q-linear-form_wf, 
qv-lower_wf, 
l_member_wf, 
qvn_wf, 
list_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[S:q-linear-form(n)  List].  \mforall{}[p:\mBbbQ{}\^{}n].    (qv-constrained(S;p)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-11_22_28
Last ObjectModification:
2015_12_27-PM-07_32_06
Theory : rationals
Home
Index