Nuprl Lemma : qv-convex-and

[S1,S2:(ℚ List) ⟶ ℙ].  (qv-convex(p.S1[p])  qv-convex(p.S2[p])  qv-convex(p.S1[p] ∧ S2[p]))


Proof




Definitions occuring in Statement :  qv-convex: qv-convex(p.S[p]) rationals: list: List uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q qv-convex: qv-convex(p.S[p]) all: x:A. B[x] and: P ∧ Q cand: c∧ B member: t ∈ T prop: subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a top: Top nat: so_lambda: λ2x.t[x] guard: {T}
Lemmas referenced :  qle_wf int-subtype-rationals rationals_wf and_wf equal_wf qv-dim_wf subtype_rel_list top_wf nat_wf list_wf qv-convex_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut independent_pairFormation hypothesis lemma_by_obid isectElimination hypothesisEquality natural_numberEquality applyEquality sqequalRule because_Cache intEquality independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality setElimination rename functionEquality cumulativity universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[S1,S2:(\mBbbQ{}  List)  {}\mrightarrow{}  \mBbbP{}].    (qv-convex(p.S1[p])  {}\mRightarrow{}  qv-convex(p.S2[p])  {}\mRightarrow{}  qv-convex(p.S1[p]  \mwedge{}  S2[p]))



Date html generated: 2016_05_15-PM-11_21_23
Last ObjectModification: 2015_12_27-PM-07_32_46

Theory : rationals


Home Index