Nuprl Lemma : qv-convex-and
∀[S1,S2:(ℚ List) ⟶ ℙ].  (qv-convex(p.S1[p]) 
⇒ qv-convex(p.S2[p]) 
⇒ qv-convex(p.S1[p] ∧ S2[p]))
Proof
Definitions occuring in Statement : 
qv-convex: qv-convex(p.S[p])
, 
rationals: ℚ
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
qv-convex: qv-convex(p.S[p])
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
Lemmas referenced : 
qle_wf, 
int-subtype-rationals, 
rationals_wf, 
and_wf, 
equal_wf, 
qv-dim_wf, 
subtype_rel_list, 
top_wf, 
nat_wf, 
list_wf, 
qv-convex_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
intEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[S1,S2:(\mBbbQ{}  List)  {}\mrightarrow{}  \mBbbP{}].    (qv-convex(p.S1[p])  {}\mRightarrow{}  qv-convex(p.S2[p])  {}\mRightarrow{}  qv-convex(p.S1[p]  \mwedge{}  S2[p]))
Date html generated:
2016_05_15-PM-11_21_23
Last ObjectModification:
2015_12_27-PM-07_32_46
Theory : rationals
Home
Index