Nuprl Lemma : reciprocal-qle

e:ℚ. ∃m:ℕ+((1/m) ≤ e) supposing 0 < e


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qdiv: (r/s) rationals: nat_plus: + uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T experimental: experimental{impliesFunctionality}(possibleextract) reciprocal-qle-proof q-elim decidable__equal_int qle_reflexivity rem_bounds_1 qmul_preserves_qle any: any x decidable__int_equal uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  reciprocal-qle-proof lifting-strict-spread istype-void strict4-spread lifting-strict-int_eq strict4-decide q-elim decidable__equal_int qle_reflexivity rem_bounds_1 qmul_preserves_qle decidable__int_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}e:\mBbbQ{}.  \mexists{}m:\mBbbN{}\msupplus{}.  ((1/m)  \mleq{}  e)  supposing  0  <  e



Date html generated: 2019_10_16-PM-00_32_20
Last ObjectModification: 2019_06_26-PM-04_16_03

Theory : rationals


Home Index