Nuprl Lemma : reciprocal-qle
∀e:ℚ. ∃m:ℕ+. ((1/m) ≤ e) supposing 0 < e
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
experimental: experimental{impliesFunctionality}(possibleextract)
, 
reciprocal-qle-proof, 
q-elim, 
decidable__equal_int, 
qle_reflexivity, 
rem_bounds_1, 
qmul_preserves_qle, 
any: any x
, 
decidable__int_equal, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
reciprocal-qle-proof, 
lifting-strict-spread, 
istype-void, 
strict4-spread, 
lifting-strict-int_eq, 
strict4-decide, 
q-elim, 
decidable__equal_int, 
qle_reflexivity, 
rem_bounds_1, 
qmul_preserves_qle, 
decidable__int_equal
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}e:\mBbbQ{}.  \mexists{}m:\mBbbN{}\msupplus{}.  ((1/m)  \mleq{}  e)  supposing  0  <  e
Date html generated:
2019_10_16-PM-00_32_20
Last ObjectModification:
2019_06_26-PM-04_16_03
Theory : rationals
Home
Index