Nuprl Lemma : reciprocal-qle-proof

e:ℚ. ∃m:ℕ+((1/m) ≤ e) supposing 0 < e


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qdiv: (r/s) rationals: nat_plus: + uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B implies:  Q exists: x:A. B[x] nat_plus: + cand: c∧ B not: ¬A uiff: uiff(P;Q) and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) int_nzero: -o nequal: a ≠ b ∈  nat: le: A ≤ B subtract: m less_than': less_than'(a;b) less_than: a < b rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  qless_witness int-subtype-rationals q-elim nat_plus_properties assert-qeq assert_wf qeq_wf2 not_wf equal-wf-base rationals_wf int_subtype_base exists_wf nat_plus_wf qle_wf qdiv_wf subtype_rel_set less_than_wf satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-T-base int-equal-in-rationals qless_wf squash_wf true_wf iff_weakening_equal qmul_preserves_qless qless-int qmul_wf qmul_zero_qrng qmul-qdiv-cancel decidable__equal_int subtype_base_sq qle_reflexivity div_rem_sum nequal_wf rem_bounds_1 decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma le_wf div_bounds_1 decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel itermMultiply_wf itermAdd_wf int_term_value_mul_lemma int_term_value_add_lemma equal_wf qmul_preserves_qle qmul_one_qrng qmul_ac_1_qrng qmul-mul qle-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis applyEquality sqequalRule hypothesisEquality independent_functionElimination rename dependent_functionElimination because_Cache productElimination setElimination addLevel impliesFunctionality independent_isectElimination baseClosed hyp_replacement equalitySymmetry applyLambdaEquality lambdaEquality intEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityTransitivity imageElimination imageMemberEquality universeEquality unionElimination instantiate cumulativity dependent_set_memberEquality addEquality minusEquality multiplyEquality

Latex:
\mforall{}e:\mBbbQ{}.  \mexists{}m:\mBbbN{}\msupplus{}.  ((1/m)  \mleq{}  e)  supposing  0  <  e



Date html generated: 2018_05_22-AM-00_07_33
Last ObjectModification: 2017_07_26-PM-06_51_36

Theory : rationals


Home Index