Nuprl Lemma : cat-inverse_wf
∀[C:SmallCategory]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) x y]. ∀[g:cat-arrow(C) y x].  (fg=1 ∈ ℙ)
Proof
Definitions occuring in Statement : 
cat-inverse: fg=1
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cat-inverse: fg=1
Lemmas referenced : 
equal_wf, 
cat-arrow_wf, 
cat-comp_wf, 
cat-id_wf, 
cat-ob_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].  \mforall{}[g:cat-arrow(C)  y  x].    (fg=1  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-07_49_50
Last ObjectModification:
2017_01_08-PM-00_30_55
Theory : small!categories
Home
Index