Nuprl Lemma : full-faithful-functor_wf
∀[C,D:SmallCategory]. ∀[F:Functor(C;D)].  (ff-functor(C;D;F) ∈ ℙ)
Proof
Definitions occuring in Statement : 
full-faithful-functor: ff-functor(C;D;F)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
full-faithful-functor: ff-functor(C;D;F)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat-functor_wf, 
functor-arrow_wf, 
functor-ob_wf, 
cat-arrow_wf, 
biject_wf, 
cat-ob_wf, 
all_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].    (ff-functor(C;D;F)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-07_51_12
Last ObjectModification:
2015_12_28-PM-02_23_53
Theory : small!categories
Home
Index