Nuprl Lemma : presheaf-subset_wf
∀[C:SmallCategory]. ∀[F:Presheaf(C)]. ∀[P:I:cat-ob(C) ⟶ (F I) ⟶ ℙ].
  F|I,rho.P[I;rho] ∈ Presheaf(C) supposing stable-element-predicate(C;F;I,rho.P[I;rho])
Proof
Definitions occuring in Statement : 
presheaf-subset: F|I,rho.P[I; rho]
, 
stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho])
, 
presheaf: Presheaf(C)
, 
functor-ob: ob(F)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
presheaf: Presheaf(C)
, 
all: ∀x:A. B[x]
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
type-cat: TypeCat
, 
prop: ℙ
Lemmas referenced : 
presheaf-subset_wf1, 
functor-ob_wf, 
op-cat_wf, 
small-category-subtype, 
type-cat_wf, 
subtype_rel-equal, 
cat-ob_wf, 
cat_ob_op_lemma, 
subtype_rel_self, 
stable-element-predicate_wf, 
presheaf_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:Presheaf(C)].  \mforall{}[P:I:cat-ob(C)  {}\mrightarrow{}  (F  I)  {}\mrightarrow{}  \mBbbP{}].
    F|I,rho.P[I;rho]  \mmember{}  Presheaf(C)  supposing  stable-element-predicate(C;F;I,rho.P[I;rho])
Date html generated:
2020_05_20-AM-07_57_32
Last ObjectModification:
2020_04_03-AM-11_40_33
Theory : small!categories
Home
Index