Nuprl Lemma : presheaf-subset_wf

[C:SmallCategory]. ∀[F:Presheaf(C)]. ∀[P:I:cat-ob(C) ⟶ (F I) ⟶ ℙ].
  F|I,rho.P[I;rho] ∈ Presheaf(C) supposing stable-element-predicate(C;F;I,rho.P[I;rho])


Proof




Definitions occuring in Statement :  presheaf-subset: F|I,rho.P[I; rho] stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]) presheaf: Presheaf(C) functor-ob: ob(F) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B presheaf: Presheaf(C) all: x:A. B[x] cat-ob: cat-ob(C) pi1: fst(t) type-cat: TypeCat prop:
Lemmas referenced :  presheaf-subset_wf1 functor-ob_wf op-cat_wf small-category-subtype type-cat_wf subtype_rel-equal cat-ob_wf cat_ob_op_lemma subtype_rel_self stable-element-predicate_wf presheaf_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality_alt applyEquality universeIsType hypothesis independent_isectElimination dependent_functionElimination universeEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:Presheaf(C)].  \mforall{}[P:I:cat-ob(C)  {}\mrightarrow{}  (F  I)  {}\mrightarrow{}  \mBbbP{}].
    F|I,rho.P[I;rho]  \mmember{}  Presheaf(C)  supposing  stable-element-predicate(C;F;I,rho.P[I;rho])



Date html generated: 2020_05_20-AM-07_57_32
Last ObjectModification: 2020_04_03-AM-11_40_33

Theory : small!categories


Home Index