Nuprl Lemma : bs_tree_ind_wf

[E,A:Type]. ∀[R:A ⟶ bs_tree(E) ⟶ ℙ]. ∀[v:bs_tree(E)]. ∀[null:{x:A| R[x;bst_null()]} ].
[leaf:value:E ⟶ {x:A| R[x;bst_leaf(value)]} ]. ∀[node:left:bs_tree(E)
                                                       ⟶ value:E
                                                       ⟶ right:bs_tree(E)
                                                       ⟶ {x:A| R[x;left]} 
                                                       ⟶ {x:A| R[x;right]} 
                                                       ⟶ {x:A| R[x;bst_node(left;value;right)]} ].
  (case(v)
   null=>null
   leaf(value)=>leaf[value]
   node(left,value,right)=>rec1,rec2.node[left;value;right;rec1;rec2] ∈ {x:A| R[x;v]} )


Proof




Definitions occuring in Statement :  bs_tree_ind: bs_tree_ind bst_node: bst_node(left;value;right) bst_leaf: bst_leaf(value) bst_null: bst_null() bs_tree: bs_tree(E) uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3;s4;s5] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bs_tree_ind: bs_tree_ind so_apply: x[s1;s2;s3;s4;s5] so_apply: x[s] so_apply: x[s1;s2] bs_tree-definition bs_tree-induction uniform-comp-nat-induction bs_tree-ext eq_atom: =a y btrue: tt it: bfalse: ff bool_cases_sqequal eqff_to_assert any: any x all: x:A. B[x] implies:  Q has-value: (a)↓ so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] uimplies: supposing a subtype_rel: A ⊆B prop: guard: {T}
Lemmas referenced :  bs_tree-definition has-value_wf_base is-exception_wf lifting-strict-atom_eq strict4-decide bs_tree_wf bst_null_wf bst_leaf_wf bst_node_wf subtype_rel_function subtype_rel_self istype-universe bs_tree-induction uniform-comp-nat-induction bs_tree-ext bool_cases_sqequal eqff_to_assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule Error :memTop,  inhabitedIsType hypothesis lambdaFormation_alt thin sqequalSqle divergentSqle callbyvalueDecide sqequalHypSubstitution hypothesisEquality unionElimination sqleReflexivity equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination introduction decideExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion baseClosed extract_by_obid isectElimination independent_isectElimination lambdaEquality_alt isectIsType because_Cache functionIsType universeIsType universeEquality setIsType applyEquality functionEquality setEquality instantiate functionExtensionality

Latex:
\mforall{}[E,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  bs\_tree(E)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[v:bs\_tree(E)].  \mforall{}[null:\{x:A|  R[x;bst\_null()]\}  ].
\mforall{}[leaf:value:E  {}\mrightarrow{}  \{x:A|  R[x;bst\_leaf(value)]\}  ].  \mforall{}[node:left:bs\_tree(E)
                                                                                                              {}\mrightarrow{}  value:E
                                                                                                              {}\mrightarrow{}  right:bs\_tree(E)
                                                                                                              {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                                                                                                              {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                                                                                                              {}\mrightarrow{}  \{x:A|  R[x;bst\_node(left;value;right)]\}  ].
    (case(v)
      null=>null
      leaf(value)=>leaf[value]
      node(left,value,right)=>rec1,rec2.node[left;value;right;rec1;rec2]  \mmember{}  \{x:A|  R[x;v]\}  )



Date html generated: 2020_05_20-AM-07_48_04
Last ObjectModification: 2020_02_03-PM-02_57_24

Theory : tree_1


Home Index