Nuprl Lemma : tree-definition

[E,A:Type]. ∀[R:A ⟶ tree(E) ⟶ ℙ].
  ((∀value:E. {x:A| R[x;tree_leaf(value)]} )
   (∀left,right:tree(E).  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;tree_node(left;right)]} ))
   {∀v:tree(E). {x:A| R[x;v]} })


Proof




Definitions occuring in Statement :  tree_node: tree_node(left;right) tree_leaf: tree_leaf(value) tree: tree(E) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q guard: {T} so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] prop: all: x:A. B[x]
Lemmas referenced :  tree-induction set_wf tree_wf all_wf tree_node_wf tree_leaf_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation sqequalRule lambdaEquality applyEquality because_Cache independent_functionElimination cumulativity functionEquality setEquality setElimination rename universeEquality

Latex:
\mforall{}[E,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  tree(E)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}value:E.  \{x:A|  R[x;tree\_leaf(value)]\}  )
    {}\mRightarrow{}  (\mforall{}left,right:tree(E).
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;tree\_node(left;right)]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:tree(E).  \{x:A|  R[x;v]\}  \})



Date html generated: 2016_05_15-PM-01_49_52
Last ObjectModification: 2015_12_27-AM-00_12_40

Theory : tree_1


Home Index