Nuprl Lemma : tree-induction

[E:Type]. ∀[P:tree(E) ⟶ ℙ].
  ((∀value:E. P[tree_leaf(value)])
   (∀left,right:tree(E).  (P[left]  P[right]  P[tree_node(left;right)]))
   {∀v:tree(E). P[v]})


Proof




Definitions occuring in Statement :  tree_node: tree_node(left;right) tree_leaf: tree_leaf(value) tree: tree(E) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} so_lambda: λ2x.t[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B nat: prop: so_apply: x[s] all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A false: False ext-eq: A ≡ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  tree_leaf: tree_leaf(value) tree_size: tree_size(p) bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b tree_node: tree_node(left;right) cand: c∧ B ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T
Lemmas referenced :  uniform-comp-nat-induction all_wf tree_wf isect_wf le_wf tree_size_wf nat_wf less_than'_wf tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_formula_prop_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma lelt_wf uall_wf int_seg_wf tree_node_wf tree_leaf_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality cumulativity hypothesisEquality hypothesis applyEquality because_Cache setElimination rename functionExtensionality independent_functionElimination productElimination independent_pairEquality dependent_functionElimination voidElimination axiomEquality equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption tokenEquality unionElimination equalityElimination independent_isectElimination instantiate atomEquality dependent_pairFormation independent_pairFormation applyLambdaEquality natural_numberEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll dependent_set_memberEquality imageElimination functionEquality universeEquality

Latex:
\mforall{}[E:Type].  \mforall{}[P:tree(E)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}value:E.  P[tree\_leaf(value)])
    {}\mRightarrow{}  (\mforall{}left,right:tree(E).    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[tree\_node(left;right)]))
    {}\mRightarrow{}  \{\mforall{}v:tree(E).  P[v]\})



Date html generated: 2017_10_01-AM-08_30_33
Last ObjectModification: 2017_07_26-PM-04_24_38

Theory : tree_1


Home Index