Nuprl Lemma : mul-mono-poly-ringeq
∀[r:CRng]. ∀[m:iMonomial()]. ∀[p:iMonomial() List].
  ipolynomial-term(mul-mono-poly(m;p)) ≡ imonomial-term(m) (*) ipolynomial-term(p)
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2, 
crng: CRng, 
mul-mono-poly: mul-mono-poly(m;p), 
ipolynomial-term: ipolynomial-term(p), 
imonomial-term: imonomial-term(m), 
iMonomial: iMonomial(), 
itermMultiply: left (*) right, 
list: T List, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
iMonomial: iMonomial(), 
int_nzero: ℤ-o, 
crng: CRng, 
so_apply: x[s], 
implies: P ⇒ Q, 
mul-mono-poly: mul-mono-poly(m;p), 
all: ∀x:A. B[x], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
has-value: (a)↓, 
uimplies: b supposing a, 
prop: ℙ, 
ringeq_int_terms: t1 ≡ t2, 
rng: Rng, 
ipolynomial-term: ipolynomial-term(p), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
list_induction, 
ringeq_int_terms_wf, 
ipolynomial-term_wf, 
mul-mono-poly_wf1, 
itermMultiply_wf, 
imonomial-term_wf, 
list_wf, 
iMonomial_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
value-type-has-value, 
iMonomial-value-type, 
mul-monomials_wf, 
rng_car_wf, 
crng_wf, 
null_nil_lemma, 
ring_term_value_const_lemma, 
ring_term_value_mul_lemma, 
rng_times_zero, 
ring_term_value_wf, 
int-to-ring-zero, 
list-value-type, 
equal_wf, 
ipolynomial-term-cons-ringeq, 
mul-monomials-ringeq, 
cons_wf, 
itermAdd_wf, 
subtype_rel_product, 
int_nzero_wf, 
sorted_wf, 
subtype_rel_self, 
int_term_wf, 
ringeq_int_terms_functionality, 
ringeq_int_terms_transitivity, 
itermAdd_functionality_wrt_ringeq, 
itermMultiply_functionality_wrt_ringeq, 
ringeq_int_terms_weakening, 
ring_term_value_add_lemma, 
rng_times_over_plus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_pairEquality, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
callbyvalueReduce, 
independent_isectElimination, 
axiomEquality, 
functionEquality, 
intEquality, 
equalitySymmetry, 
equalityTransitivity, 
applyEquality, 
setEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    ipolynomial-term(mul-mono-poly(m;p))  \mequiv{}  imonomial-term(m)  (*)  ipolynomial-term(p)
Date html generated:
2018_05_21-PM-03_17_09
Last ObjectModification:
2018_05_19-AM-08_08_15
Theory : rings_1
Home
Index