Nuprl Lemma : mul-monomials-ringeq

[r:CRng]. ∀[m1,m2:iMonomial()].  imonomial-term(mul-monomials(m1;m2)) ≡ imonomial-term(m1) (*) imonomial-term(m2)


Proof




Definitions occuring in Statement :  ringeq_int_terms: t1 ≡ t2 crng: CRng mul-monomials: mul-monomials(m1;m2) imonomial-term: imonomial-term(m) iMonomial: iMonomial() itermMultiply: left (*) right uall: [x:A]. B[x]
Definitions unfolded in proof :  iMonomial: iMonomial() mul-monomials: mul-monomials(m1;m2) has-value: (a)↓ uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_nzero: -o ringeq_int_terms: t1 ≡ t2 all: x:A. B[x] top: Top crng: CRng rng: Rng true: True squash: T prop: infix_ap: y subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] merge-int: merge-int(as;bs) imonomial-term: imonomial-term(m) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ring_term_value: ring_term_value(f;t) insert-int: insert-int(x;l) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] itermConstant: "const" int_term_ind: int_term_ind itermMultiply: left (*) right itermVar: vvar bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  value-type-has-value int-value-type list_wf list-value-type merge-int-accum_wf ring_term_value_mul_lemma rng_car_wf rng_times_wf iMonomial_wf crng_wf equal_wf squash_wf true_wf imonomial-term-linear-ringeq subtype_rel_self iff_weakening_equal merge-int-accum-sq int-to-ring_wf ring_term_value_wf imonomial-term_wf list_induction all_wf merge-int_wf infix_ap_wf reduce_nil_lemma list_accum_nil_lemma ring_term_value_const_lemma list_accum_wf int_term_wf itermConstant_wf itermMultiply_wf itermVar_wf rng_times_one int-to-ring-one reduce_cons_lemma insert-int_wf cons_wf list_ind_nil_lemma list_accum_cons_lemma crng_times_comm list_ind_cons_lemma lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot imonomial-cons-ringeq crng_times_ac_1 int-to-ring-mul rng_times_assoc
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin sqequalRule callbyvalueReduce cut introduction extract_by_obid isectElimination intEquality independent_isectElimination hypothesis multiplyEquality setElimination rename hypothesisEquality lambdaFormation dependent_functionElimination isect_memberEquality voidElimination voidEquality functionEquality because_Cache natural_numberEquality isect_memberFormation lambdaEquality axiomEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed instantiate independent_functionElimination independent_pairEquality functionExtensionality unionElimination equalityElimination lessCases sqequalAxiom independent_pairFormation dependent_pairFormation promote_hyp cumulativity equalityUniverse levelHypothesis

Latex:
\mforall{}[r:CRng].  \mforall{}[m1,m2:iMonomial()].
    imonomial-term(mul-monomials(m1;m2))  \mequiv{}  imonomial-term(m1)  (*)  imonomial-term(m2)



Date html generated: 2018_05_21-PM-03_17_03
Last ObjectModification: 2018_05_19-AM-08_08_12

Theory : rings_1


Home Index