Nuprl Lemma : mul-monomials-ringeq
∀[r:CRng]. ∀[m1,m2:iMonomial()].  imonomial-term(mul-monomials(m1;m2)) ≡ imonomial-term(m1) (*) imonomial-term(m2)
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2
, 
crng: CRng
, 
mul-monomials: mul-monomials(m1;m2)
, 
imonomial-term: imonomial-term(m)
, 
iMonomial: iMonomial()
, 
itermMultiply: left (*) right
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
iMonomial: iMonomial()
, 
mul-monomials: mul-monomials(m1;m2)
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_nzero: ℤ-o
, 
ringeq_int_terms: t1 ≡ t2
, 
all: ∀x:A. B[x]
, 
top: Top
, 
crng: CRng
, 
rng: Rng
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
merge-int: merge-int(as;bs)
, 
imonomial-term: imonomial-term(m)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
ring_term_value: ring_term_value(f;t)
, 
insert-int: insert-int(x;l)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
itermConstant: "const"
, 
int_term_ind: int_term_ind, 
itermMultiply: left (*) right
, 
itermVar: vvar
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
list_wf, 
list-value-type, 
merge-int-accum_wf, 
ring_term_value_mul_lemma, 
rng_car_wf, 
rng_times_wf, 
iMonomial_wf, 
crng_wf, 
equal_wf, 
squash_wf, 
true_wf, 
imonomial-term-linear-ringeq, 
subtype_rel_self, 
iff_weakening_equal, 
merge-int-accum-sq, 
int-to-ring_wf, 
ring_term_value_wf, 
imonomial-term_wf, 
list_induction, 
all_wf, 
merge-int_wf, 
infix_ap_wf, 
reduce_nil_lemma, 
list_accum_nil_lemma, 
ring_term_value_const_lemma, 
list_accum_wf, 
int_term_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
rng_times_one, 
int-to-ring-one, 
reduce_cons_lemma, 
insert-int_wf, 
cons_wf, 
list_ind_nil_lemma, 
list_accum_cons_lemma, 
crng_times_comm, 
list_ind_cons_lemma, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
imonomial-cons-ringeq, 
crng_times_ac_1, 
int-to-ring-mul, 
rng_times_assoc
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
sqequalRule, 
callbyvalueReduce, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
because_Cache, 
natural_numberEquality, 
isect_memberFormation, 
lambdaEquality, 
axiomEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_functionElimination, 
independent_pairEquality, 
functionExtensionality, 
unionElimination, 
equalityElimination, 
lessCases, 
sqequalAxiom, 
independent_pairFormation, 
dependent_pairFormation, 
promote_hyp, 
cumulativity, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[r:CRng].  \mforall{}[m1,m2:iMonomial()].
    imonomial-term(mul-monomials(m1;m2))  \mequiv{}  imonomial-term(m1)  (*)  imonomial-term(m2)
Date html generated:
2018_05_21-PM-03_17_03
Last ObjectModification:
2018_05_19-AM-08_08_12
Theory : rings_1
Home
Index