Nuprl Lemma : p-int-eventually-constant

p:{2...}. ∀k:ℕ.  ∃n:ℕ+. ∀m:{n...}. ((k(p) m) k ∈ ℤ)


Proof




Definitions occuring in Statement :  p-int: k(p) int_upper: {i...} nat_plus: + nat: all: x:A. B[x] exists: x:A. B[x] apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} exists: x:A. B[x] nat_plus: + int_upper: {i...} ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: false: False and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) less_than': less_than'(a;b) true: True squash: T rev_uimplies: rev_uimplies(P;Q) p-int: k(p) p-reduce: mod(p^n) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b sq_stable: SqStable(P)
Lemmas referenced :  istype-nat istype-int_upper decidable__equal_int subtype_base_sq int_subtype_base nat_properties int_upper_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than exp-positive intformand_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_term_value_var_lemma int_formula_prop_le_lemma exp_wf2 nat_plus_properties decidable__le istype-le log_wf add_nat_plus subtype_rel_sets_simple le_wf less_than_wf istype-false not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel2 add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma false_wf log-property squash_wf true_wf exp_add subtype_rel_self iff_weakening_equal exp1 upper_subtype_nat less_than_functionality le_weakening multiply_functionality_wrt_le mul_preserves_lt itermMultiply_wf int_term_value_mul_lemma set_subtype_base modulus_base exp_wf_nat_plus exp-nondecreasing nat_plus_subtype_nat sq_stable__le le_weakening2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin natural_numberEquality dependent_functionElimination setElimination rename hypothesisEquality unionElimination instantiate cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination dependent_pairFormation_alt dependent_set_memberEquality_alt approximateComputation lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule universeIsType equalityTransitivity equalitySymmetry int_eqEquality independent_pairFormation addEquality applyEquality inhabitedIsType productElimination applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed equalityIstype imageElimination imageMemberEquality universeEquality multiplyEquality functionIsType sqequalBase productIsType

Latex:
\mforall{}p:\{2...\}.  \mforall{}k:\mBbbN{}.    \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\{n...\}.  ((k(p)  m)  =  k)



Date html generated: 2019_10_15-AM-10_34_25
Last ObjectModification: 2019_02_11-PM-02_03_22

Theory : rings_1


Home Index