Nuprl Lemma : p-int-eventually-constant
∀p:{2...}. ∀k:ℕ.  ∃n:ℕ+. ∀m:{n...}. ((k(p) m) = k ∈ ℤ)
Proof
Definitions occuring in Statement : 
p-int: k(p), 
int_upper: {i...}, 
nat_plus: ℕ+, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
apply: f a, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
exists: ∃x:A. B[x], 
nat_plus: ℕ+, 
int_upper: {i...}, 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
prop: ℙ, 
false: False, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
le: A ≤ B, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
rev_uimplies: rev_uimplies(P;Q), 
p-int: k(p), 
p-reduce: i mod(p^n), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
sq_stable: SqStable(P)
Lemmas referenced : 
istype-nat, 
istype-int_upper, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
nat_properties, 
int_upper_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
exp-positive, 
intformand_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
exp_wf2, 
nat_plus_properties, 
decidable__le, 
istype-le, 
log_wf, 
add_nat_plus, 
subtype_rel_sets_simple, 
le_wf, 
less_than_wf, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel2, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
log-property, 
squash_wf, 
true_wf, 
exp_add, 
subtype_rel_self, 
iff_weakening_equal, 
exp1, 
upper_subtype_nat, 
less_than_functionality, 
le_weakening, 
multiply_functionality_wrt_le, 
mul_preserves_lt, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
set_subtype_base, 
modulus_base, 
exp_wf_nat_plus, 
exp-nondecreasing, 
nat_plus_subtype_nat, 
sq_stable__le, 
le_weakening2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
hypothesisEquality, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
approximateComputation, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
int_eqEquality, 
independent_pairFormation, 
addEquality, 
applyEquality, 
inhabitedIsType, 
productElimination, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
equalityIstype, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
multiplyEquality, 
functionIsType, 
sqequalBase, 
productIsType
Latex:
\mforall{}p:\{2...\}.  \mforall{}k:\mBbbN{}.    \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\{n...\}.  ((k(p)  m)  =  k)
Date html generated:
2019_10_15-AM-10_34_25
Last ObjectModification:
2019_02_11-PM-02_03_22
Theory : rings_1
Home
Index