Nuprl Lemma : p-minus-int-eventually

p:{2...}. ∀k:ℕ+.  ∃n:ℕ+. ∀m:{n...}. ((-k(p) m) (p^m k) ∈ ℤ)


Proof




Definitions occuring in Statement :  p-int: k(p) exp: i^n int_upper: {i...} nat_plus: + all: x:A. B[x] exists: x:A. B[x] apply: a subtract: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: implies:  Q le: A ≤ B and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) top: Top less_than': less_than'(a;b) true: True nat_plus: + guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] nat: less_than: a < b squash: T p-int: k(p) p-reduce: mod(p^n) p-adics: p-adics(p) int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k
Lemmas referenced :  nat_plus_wf int_upper_wf log-property subtype_rel_sets le_wf less_than_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel2 nat_plus_subtype_nat nat_plus_properties int_upper_properties full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf log_wf nat_wf add_nat_plus add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma equal_wf exp_wf2 all_wf p-int_wf zero-add le-add-cancel p-adics_wf less_than_transitivity1 int_seg_wf upper_subtype_nat sq_stable__le le_weakening2 subtract_wf exp-nondecreasing decidable__le intformle_wf int_formula_prop_le_lemma mod_bounds less_than_transitivity2 modulus_base_neg itermMinus_wf int_term_value_minus_lemma lelt_wf decidable__equal_int itermSubtract_wf int_term_value_subtract_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality applyEquality sqequalRule intEquality because_Cache lambdaEquality independent_isectElimination setElimination rename setEquality productElimination dependent_functionElimination unionElimination independent_pairFormation voidElimination independent_functionElimination isect_memberEquality voidEquality approximateComputation dependent_pairFormation int_eqEquality dependent_set_memberEquality addEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion minusEquality imageElimination

Latex:
\mforall{}p:\{2...\}.  \mforall{}k:\mBbbN{}\msupplus{}.    \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\{n...\}.  ((-k(p)  m)  =  (p\^{}m  -  k))



Date html generated: 2018_05_21-PM-03_19_12
Last ObjectModification: 2018_05_19-AM-08_10_18

Theory : rings_1


Home Index