Nuprl Lemma : rng_nexp-int

[n:ℕ]. ∀[a:ℤ].  ((a ↑ℤ-rng n) a^n ∈ ℤ)


Proof




Definitions occuring in Statement :  rng_nexp: e ↑n int_ring: -rng exp: i^n nat: uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  exp: i^n rng_nexp: e ↑n mon_nat_op: n ⋅ e mul_mon_of_rng: r↓xmn grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e int_ring: -rng rng_times: * rng_one: 1 nat_op: x(op;id) e uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y lt_int: i <j infix_ap: y subtract: m ifthenelse: if then else fi  bfalse: ff decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_lambda: λ2x.t[x] so_apply: x[s] squash: T nequal: a ≠ b ∈  true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec-unroll lt_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_lt_int eq_int_wf assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int mul-commutes itop_wf int_seg_wf squash_wf true_wf primrec_wf le_wf iff_weakening_equal le_int_wf bnot_wf assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality because_Cache equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate cumulativity multiplyEquality imageElimination universeEquality dependent_set_memberEquality imageMemberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbZ{}].    ((a  \muparrow{}\mBbbZ{}-rng  n)  =  a\^{}n)



Date html generated: 2017_10_01-AM-08_18_52
Last ObjectModification: 2017_02_28-PM-02_03_52

Theory : rings_1


Home Index