Nuprl Lemma : rng_nexp-int
∀[n:ℕ]. ∀[a:ℤ].  ((a ↑ℤ-rng n) = a^n ∈ ℤ)
Proof
Definitions occuring in Statement : 
rng_nexp: e ↑r n
, 
int_ring: ℤ-rng
, 
exp: i^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
exp: i^n
, 
rng_nexp: e ↑r n
, 
mon_nat_op: n ⋅ e
, 
mul_mon_of_rng: r↓xmn
, 
grp_op: *
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
grp_id: e
, 
int_ring: ℤ-rng
, 
rng_times: *
, 
rng_one: 1
, 
nat_op: n x(op;id) e
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
ycomb: Y
, 
lt_int: i <z j
, 
infix_ap: x f y
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
primrec-unroll, 
lt_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eq_int_wf, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
mul-commutes, 
itop_wf, 
int_seg_wf, 
squash_wf, 
true_wf, 
primrec_wf, 
le_wf, 
iff_weakening_equal, 
le_int_wf, 
bnot_wf, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
multiplyEquality, 
imageElimination, 
universeEquality, 
dependent_set_memberEquality, 
imageMemberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbZ{}].    ((a  \muparrow{}\mBbbZ{}-rng  n)  =  a\^{}n)
Date html generated:
2017_10_01-AM-08_18_52
Last ObjectModification:
2017_02_28-PM-02_03_52
Theory : rings_1
Home
Index