Nuprl Lemma : oalist_cases
∀a:LOSet. ∀b:AbDMon. ∀Q:((|a| × |b|) List) ⟶ ℙ.
  (Q[[]]
  ⇒ (∀ws:|oal(a;b)|. ∀x:|a|. ∀y:|b|.  ((↑before(x;map(λx.(fst(x));ws))) ⇒ (¬(y = e ∈ |b|)) ⇒ Q[[<x, y> / ws]]))
  ⇒ {∀ws:|oal(a;b)|. Q[ws]})
Proof
Definitions occuring in Statement : 
oalist: oal(a;b), 
before: before(u;ps), 
map: map(f;as), 
cons: [a / b], 
nil: [], 
list: T List, 
assert: ↑b, 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
pi1: fst(t), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
pair: <a, b>, 
product: x:A × B[x], 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
grp_id: e, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
dset: DSet, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
set_prod: s × t, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
oalist: oal(a;b), 
dset_set: dset_set, 
dset_list: s List, 
dset_of_mon: g↓set, 
prop: ℙ, 
so_apply: x[s], 
and: P ∧ Q, 
pi2: snd(t), 
sq_stable: SqStable(P), 
not: ¬A, 
false: False, 
squash: ↓T, 
or: P ∨ Q, 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
cons: [a / b], 
set_eq: =b, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
band: p ∧b q, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
grp_car: |g|, 
infix_ap: x f y, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
cand: A c∧ B, 
true: True
Lemmas referenced : 
set_car_wf, 
oalist_wf, 
grp_car_wf, 
assert_wf, 
before_wf, 
map_wf, 
set_prod_wf, 
dset_of_mon_wf, 
not_wf, 
equal_wf, 
grp_id_wf, 
cons_wf, 
subtype_rel_self, 
nil_wf, 
list_wf, 
abdmonoid_wf, 
loset_wf, 
sq_stable__and, 
sd_ordered_wf, 
mem_wf, 
dset_of_mon_wf0, 
sq_stable__assert, 
sq_stable__not, 
list-cases, 
map_nil_lemma, 
istype-void, 
sd_ordered_nil_lemma, 
mem_nil_lemma, 
true_wf, 
false_wf, 
product_subtype_list, 
map_cons_lemma, 
sd_ordered_cons_lemma, 
mem_cons_lemma, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
bor_wf, 
infix_ap_wf, 
bool_wf, 
grp_eq_wf, 
iff_transitivity, 
or_wf, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_mon_eq, 
assert_of_band, 
squash_wf, 
dset_wf, 
assert_elim
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
because_Cache, 
productElimination, 
productEquality, 
independent_pairEquality, 
instantiate, 
universeEquality, 
isect_memberEquality_alt, 
independent_functionElimination, 
voidElimination, 
functionIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
productIsType, 
promote_hyp, 
hypothesis_subsumption, 
equalityElimination, 
independent_isectElimination, 
dependent_pairFormation_alt, 
equalityIsType1, 
functionEquality, 
independent_pairFormation, 
inlFormation_alt, 
inrFormation_alt, 
unionIsType, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
cumulativity
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:((|a|  \mtimes{}  |b|)  List)  {}\mrightarrow{}  \mBbbP{}.
    (Q[[]]
    {}\mRightarrow{}  (\mforall{}ws:|oal(a;b)|.  \mforall{}x:|a|.  \mforall{}y:|b|.
                ((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws)))  {}\mRightarrow{}  (\mneg{}(y  =  e))  {}\mRightarrow{}  Q[[<x,  y>  /  ws]]))
    {}\mRightarrow{}  \{\mforall{}ws:|oal(a;b)|.  Q[ws]\})
Date html generated:
2019_10_16-PM-01_07_15
Last ObjectModification:
2018_10_08-PM-00_30_43
Theory : polynom_2
Home
Index