Nuprl Lemma : omral_alg_umap_unique
∀g:OCMon. ∀a:CDRng. ∀n:algebra{i:l}(a). ∀f:|g| ⟶ n.car. ∀f':algebra_hom(a; omral_alg(g;a); n).
  (((f' o (λk:|g|. inj(k,1))) = f ∈ (|g| ⟶ n.car)) ⇒ (f' = alg_umap(n,f) ∈ (|omral(g;a)| ⟶ n.car)))
Proof
Definitions occuring in Statement : 
omral_alg_umap: alg_umap(n,f), 
omral_alg: omral_alg(g;r), 
omral_inj: inj(k,v), 
omralist: omral(g;r), 
algebra_hom: algebra_hom(A; M; N), 
algebra: algebra{i:l}(A), 
alg_car: a.car, 
compose: f o g, 
tlambda: λx:T. b[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
equal: s = t ∈ T, 
cdrng: CDRng, 
rng_one: 1, 
ocmon: OCMon, 
grp_car: |g|, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
algebra: algebra{i:l}(A), 
module: A-Module, 
subtype_rel: A ⊆r B, 
algebra_hom: algebra_hom(A; M; N), 
module_hom: module_hom(A; M; N), 
and: P ∧ Q, 
omral_alg: omral_alg(g;r), 
alg_car: a.car, 
pi1: fst(t), 
omralist: omral(g;r), 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
dset_list: s List, 
set_prod: s × t, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
add_grp_of_rng: r↓+gp, 
grp_id: e, 
pi2: snd(t), 
grp_car: |g|, 
tlambda: λx:T. b[x], 
omral_alg_umap: alg_umap(n,f), 
squash: ↓T, 
omon: OMon, 
so_lambda: λ2x.t[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bfalse: ff, 
infix_ap: x f y, 
so_apply: x[s], 
cand: A c∧ B, 
rng_of_alg: a↓rg, 
rng_car: |r|, 
dset: DSet, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
compose: f o g, 
rng_mssum: rng_mssum, 
grp_of_module: m↓grp, 
abgrp: AbGrp, 
grp: Group{i}, 
iabmonoid: IAbMonoid, 
imon: IMonoid, 
calgebra: CAlg(A), 
monoid_hom: MonHom(M1,M2), 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
module_hom_p: module_hom_p(a; m; n; f), 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f), 
alg_act: a.act
Lemmas referenced : 
equal_wf, 
grp_car_wf, 
alg_car_wf, 
rng_car_wf, 
compose_wf, 
set_car_wf, 
omralist_wf, 
omral_inj_wf, 
rng_one_wf, 
algebra_hom_wf, 
omral_alg_wf, 
algebra_wf, 
cdrng_wf, 
ocmon_wf, 
squash_wf, 
true_wf, 
rng_mssum_functionality_wrt_equal, 
oset_of_ocmon_wf, 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
grp_op_wf, 
uall_wf, 
monot_wf, 
rng_of_alg_wf2, 
dset_of_mon_wf0, 
add_grp_of_rng_wf, 
rng_of_alg_wf, 
alg_act_wf, 
lookup_wf, 
oset_of_ocmon_wf0, 
rng_zero_wf, 
dset_wf, 
omral_dom_wf, 
mset_mem_wf, 
iff_weakening_equal, 
module_hom_action, 
grp_of_module_wf2, 
grp_sig_wf, 
monoid_p_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
comm_wf, 
set_wf, 
mset_for_functionality, 
grp_of_module_wf, 
dist_hom_over_mset_for, 
omral_alg_wf2, 
calgebra_wf, 
algebra_hom_properties, 
module_hom_properties, 
module_hom_is_grp_hom, 
monoid_hom_p_wf, 
omral_action_wf, 
rng_times_wf, 
omral_action_inj, 
rng_times_one, 
omral_fact_a
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
functionExtensionality, 
because_Cache, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
productElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
instantiate, 
productEquality, 
cumulativity, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
independent_functionElimination, 
setEquality, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
dependent_set_memberEquality, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.  \mforall{}n:algebra\{i:l\}(a).  \mforall{}f:|g|  {}\mrightarrow{}  n.car.  \mforall{}f':algebra\_hom(a;  omral\_alg(g;a);  n).
    (((f'  o  (\mlambda{}k:|g|.  inj(k,1)))  =  f)  {}\mRightarrow{}  (f'  =  alg\_umap(n,f)))
 Date html generated: 
2017_10_01-AM-10_07_41
 Last ObjectModification: 
2017_03_03-PM-01_17_35
Theory : polynom_3
Home
Index