Nuprl Lemma : omral_alg_wf2
∀g:OCMon. ∀r:CDRng.  (omral_alg(g;r) ∈ CAlg(r))
Proof
Definitions occuring in Statement : 
omral_alg: omral_alg(g;r), 
calgebra: CAlg(A), 
all: ∀x:A. B[x], 
member: t ∈ T, 
cdrng: CDRng, 
ocmon: OCMon
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
calgebra: CAlg(A), 
algebra: algebra{i:l}(A), 
module: A-Module, 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
grp_car: |g|, 
pi1: fst(t), 
add_grp_of_rng: r↓+gp, 
rng_car: |r|, 
grp_eq: =b, 
pi2: snd(t), 
rng_eq: =b, 
abdgrp: AbDGrp, 
abgrp: AbGrp, 
grp: Group{i}, 
mon: Mon, 
subtype_rel: A ⊆r B, 
ocmon: OCMon, 
omon: OMon, 
abmonoid: AbMon, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bfalse: ff, 
infix_ap: x f y, 
oal_grp: oal_grp(s;g), 
grp_op: *, 
grp_id: e, 
grp_inv: ~, 
omral_alg: omral_alg(g;r), 
alg_car: a.car, 
alg_plus: a.plus, 
alg_zero: a.zero, 
alg_minus: a.minus, 
omral_minus: --ps, 
omral_zero: 00g,r, 
omral_plus: ps ++ qs, 
omralist: omral(g;r), 
monoid_p: IsMonoid(T;op;id), 
group_p: IsGroup(T;op;id;inv), 
oset_of_ocmon: g↓oset, 
comm: Comm(T;op), 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set, 
action_p: IsAction(A;x;e;S;f), 
inverse: Inverse(T;op;id;inv), 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
alg_act: a.act, 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f), 
dset: DSet, 
alg_times: a.times, 
alg_one: a.one, 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
Lemmas referenced : 
group_p_wf, 
alg_car_wf, 
rng_car_wf, 
alg_plus_wf, 
alg_zero_wf, 
alg_minus_wf, 
comm_wf, 
action_p_wf, 
rng_times_wf, 
rng_one_wf, 
alg_act_wf, 
bilinear_p_wf, 
rng_plus_wf, 
monoid_p_wf, 
alg_times_wf, 
alg_one_wf, 
bilinear_wf, 
all_wf, 
dist_1op_2op_lr_wf, 
cdrng_wf, 
ocmon_wf, 
omral_alg_wf, 
cdrng_properties, 
add_grp_of_rng_wf_b, 
eqfun_p_wf, 
grp_car_wf, 
grp_eq_wf, 
oal_grp_wf, 
oset_of_ocmon_wf, 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
eqtt_to_assert, 
cancel_wf, 
grp_op_wf, 
uall_wf, 
monot_wf, 
grp_properties, 
mon_properties, 
omral_plus_comm, 
omral_action_times, 
omral_action_one, 
omral_action_plus_l, 
set_car_wf, 
omralist_wf, 
dset_wf, 
omral_action_plus_r, 
omral_times_assoc, 
omral_times_ident_r, 
omral_times_ident_l, 
omral_bilinear, 
omral_action_times_r1, 
omral_action_times_r2, 
omral_times_comm_a
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
dependent_set_memberEquality, 
independent_pairFormation, 
hypothesis, 
productEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
instantiate, 
cumulativity, 
universeEquality, 
functionEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setEquality, 
applyLambdaEquality, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality, 
independent_pairEquality
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.    (omral\_alg(g;r)  \mmember{}  CAlg(r))
Date html generated:
2017_10_01-AM-10_07_14
Last ObjectModification:
2017_03_03-PM-01_16_29
Theory : polynom_3
Home
Index