Nuprl Lemma : omral_times_assoc
∀g:OCMon. ∀a:CDRng.  Assoc(|omral(g;a)|;λps,qs. (ps ** qs))
Proof
Definitions occuring in Statement : 
omral_times: ps ** qs, 
omralist: omral(g;r), 
assoc: Assoc(T;op), 
all: ∀x:A. B[x], 
lambda: λx.A[x], 
cdrng: CDRng, 
ocmon: OCMon, 
set_car: |p|
Definitions unfolded in proof : 
assoc: Assoc(T;op), 
infix_ap: x f y, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
ocmon: OCMon, 
omon: OMon, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
abmonoid: AbMon, 
mon: Mon, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
bfalse: ff, 
so_apply: x[s], 
cand: A c∧ B, 
abdmonoid: AbDMon, 
dset: DSet, 
squash: ↓T, 
cdrng: CDRng, 
crng: CRng, 
rng: Rng, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
abgrp: AbGrp, 
grp: Group{i}, 
iabmonoid: IAbMonoid, 
imon: IMonoid, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
add_grp_of_rng: r↓+gp, 
grp_car: |g|, 
omralist: omral(g;r), 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
dset_list: s List, 
set_prod: s × t, 
grp_id: e, 
pi2: snd(t), 
rng_mssum: rng_mssum, 
set_eq: =b, 
label: ...$L... t, 
rng_when: rng_when, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet
Lemmas referenced : 
omon_inc, 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
grp_car_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
grp_eq_wf, 
eqtt_to_assert, 
cancel_wf, 
grp_op_wf, 
uall_wf, 
monot_wf, 
abdmonoid_wf, 
set_car_wf, 
omralist_wf, 
dset_wf, 
cdrng_wf, 
ocmon_wf, 
omral_lookups_same_a, 
omral_times_wf2, 
squash_wf, 
true_wf, 
rng_car_wf, 
lookup_omral_times, 
iff_weakening_equal, 
mset_for_functionality, 
oset_of_ocmon_wf, 
add_grp_of_rng_wf_b, 
grp_sig_wf, 
monoid_p_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
comm_wf, 
set_wf, 
mset_for_wf, 
rng_when_wf, 
oset_of_ocmon_wf0, 
dset_of_mon_wf0, 
add_grp_of_rng_wf, 
rng_times_wf, 
lookup_wf, 
rng_zero_wf, 
omral_times_wf, 
list_wf, 
omral_dom_wf, 
mset_prod_wf, 
mset_for_dom_shift, 
omral_times_dom, 
mset_mem_wf, 
mset_diff_wf, 
rng_wf, 
lookup_omral_eq_zero, 
rng_times_zero, 
rng_when_of_zero, 
assert_functionality_wrt_uiff, 
bnot_wf, 
mset_mem_diff, 
mset_prod_wf2, 
omral_dom_wf2, 
iff_transitivity, 
not_wf, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_bnot, 
mset_for_of_id, 
rng_mssum_functionality_wrt_equal, 
rng_mssum_wf, 
rng_times_mssum_l, 
rng_times_when_l, 
rng_times_mssum_r, 
rng_times_when_r, 
rng_mssum_when_swap, 
rng_mssum_swap, 
rng_when_swap, 
grp_eq_sym, 
set_eq_wf, 
fset_for_when_eq, 
prod_in_mset_prod, 
loset_wf, 
mon_assoc, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
abdmonoid_abmonoid, 
ocmon_subtype_abdmonoid, 
subtype_rel_transitivity, 
iabmonoid_wf, 
imon_wf, 
rng_times_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
isectElimination, 
hypothesis, 
because_Cache, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
cumulativity, 
universeEquality, 
functionEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setEquality, 
independent_pairFormation, 
promote_hyp, 
isect_memberEquality, 
axiomEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.    Assoc(|omral(g;a)|;\mlambda{}ps,qs.  (ps  **  qs))
Date html generated:
2017_10_01-AM-10_06_29
Last ObjectModification:
2017_03_03-PM-01_18_31
Theory : polynom_3
Home
Index