Nuprl Lemma : compatible-composition_wf
∀[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[cA:Gamma, phi ⊢ Compositon(A)].
∀[cB:Gamma, psi ⊢ Compositon(B)].
  compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) ∈ ℙ{[i | j'']} supposing Gamma, (phi ∧ psi) ⊢ A = B
Proof
Definitions occuring in Statement : 
compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB), 
composition-structure: Gamma ⊢ Compositon(A), 
same-cubical-type: Gamma ⊢ A = B, 
context-subset: Gamma, phi, 
face-and: (a ∧ b), 
face-type: 𝔽, 
cubical-term: {X ⊢ _:A}, 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB), 
member: t ∈ T, 
prop: ℙ, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
csm-id-adjoin: [u], 
csm-id: 1(X), 
same-cubical-type: Gamma ⊢ A = B, 
btrue: tt, 
bfalse: ff, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
record-update: r[x := v], 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
face-lattice: face-lattice(T;eq), 
face_lattice: face_lattice(I), 
record-select: r.x, 
lattice-point: Point(l), 
face-presheaf: 𝔽, 
functor-ob: ob(F), 
I_cube: A(I), 
constant-cubical-type: (X), 
face-type: 𝔽, 
pi1: fst(t), 
cubical-type-at: A(a), 
so_apply: x[s], 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
bdd-distributive-lattice: BoundedDistributiveLattice, 
context-subset: Gamma, phi, 
implies: P ⇒ Q, 
face-term-implies: Gamma ⊢ (phi ⇒ psi), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
composition-structure: Gamma ⊢ Compositon(A), 
guard: {T}, 
true: True, 
squash: ↓T, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced : 
cubical_set_wf, 
cube_set_map_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
context-subset_wf, 
face-and_wf, 
face-type_wf, 
cubical-term-eqcd, 
csm-ap-type_wf, 
subset-cubical-type, 
face-term-implies-subset, 
face-term-and-implies1, 
context-subset-adjoin-subtype, 
csm-id-adjoin_wf, 
interval-0_wf, 
csm-ap-term_wf, 
csm-id-adjoin_wf-interval-0, 
constrained-cubical-term-eqcd, 
same-cubical-type_wf, 
face-term-and-implies2, 
composition-structure_wf, 
cubical-type_wf, 
istype-cubical-term, 
sub_cubical_set_self, 
cube_set_map_subtype3, 
context-subset-map, 
csm-face-type, 
context-subset-is-subset, 
subset-cubical-term, 
context-subset-subtype-and2, 
context-subset-subtype-and, 
csm-same-cubical-type, 
face-1-implies-subset, 
face-1_wf, 
csm-face-term-implies, 
nat_wf, 
fset_wf, 
I_cube_wf, 
lattice-1_wf, 
subtype_rel_self, 
cubical-term-at_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
face_lattice_wf, 
lattice-point_wf, 
I_cube_pair_redex_lemma, 
csm-face-1, 
csm-id-adjoin_wf-interval-1, 
cubical_set_cumulativity-i-j, 
equal_functionality_wrt_subtype_rel2, 
sub_cubical_set_functionality, 
true_wf, 
squash_wf, 
thin-context-subset-adjoin
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
functionEquality, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
because_Cache, 
Error :memTop, 
inhabitedIsType, 
isectEquality, 
productEquality, 
equalityIstype, 
rename, 
setElimination, 
dependent_functionElimination, 
lambdaFormation_alt, 
hyp_replacement, 
independent_functionElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
\mforall{}[cA:Gamma,  phi  \mvdash{}  Compositon(A)].  \mforall{}[cB:Gamma,  psi  \mvdash{}  Compositon(B)].
    compatible-composition\{j:l,  i:l\}(Gamma;  phi;  psi;  A;  B;  cA;  cB)  \mmember{}  \mBbbP{}\{[i  |  j'']\} 
    supposing  Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  A  =  B
Date html generated:
2020_05_20-PM-05_15_05
Last ObjectModification:
2020_05_02-PM-01_24_12
Theory : cubical!type!theory
Home
Index