Nuprl Lemma : cube-+
∀[I:fset(ℕ)]. ∀[i:ℕ].  (cube+(I;i) o cube-(I;i) = 1(formal-cube(I+i)) ∈ formal-cube(I+i) j⟶ formal-cube(I+i))
Proof
Definitions occuring in Statement : 
cube-: cube-(I;i), 
cube+: cube+(I;i), 
interval-type: 𝕀, 
cube-context-adjoin: X.A, 
csm-id: 1(X), 
csm-comp: G o F, 
cube_set_map: A ⟶ B, 
formal-cube: formal-cube(I), 
add-name: I+i, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
formal-cube: formal-cube(I), 
all: ∀x:A. B[x], 
csm-id: 1(X), 
cube+: cube+(I;i), 
cube-: cube-(I;i), 
csm-comp: G o F, 
compose: f o g, 
names-hom: I ⟶ J, 
names: names(I), 
nat: ℕ, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
sq_stable: SqStable(P), 
squash: ↓T, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
prop: ℙ, 
label: ...$L... t, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
istype-nat, 
fset_wf, 
nat_wf, 
formal-cube_wf1, 
add-name_wf, 
csm-comp_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cube-_wf, 
cube+_wf, 
csm-id_wf, 
cube-set-map-subtype, 
I_cube_pair_redex_lemma, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
sq_stable__fset-member, 
int-deq_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
fset-member_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
iff_weakening_equal, 
trivial-member-add-name1, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
names_wf, 
I_cube_wf, 
csm-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
because_Cache, 
sqequalRule, 
functionExtensionality, 
dependent_functionElimination, 
Error :memTop, 
setElimination, 
rename, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
voidElimination, 
equalityIstype, 
promote_hyp, 
cumulativity
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    (cube+(I;i)  o  cube-(I;i)  =  1(formal-cube(I+i)))
Date html generated:
2020_05_20-PM-02_39_03
Last ObjectModification:
2020_04_04-PM-04_37_33
Theory : cubical!type!theory
Home
Index