Nuprl Lemma : fl_all-implies-instance
∀[I:fset(ℕ)]. ∀[x:Point(dM(I))]. ∀[i:ℕ]. ∀[v:Point(face_lattice(I+i))].
  (((∀i.v) = 1 ∈ Point(face_lattice(I))) ⇒ ((v)<(i/x)> = 1 ∈ Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
fl_all: (∀i.phi), 
fl-morph: <f>, 
face_lattice: face_lattice(I), 
nc-p: (i/z), 
add-name: I+i, 
dM: dM(I), 
lattice-1: 1, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
DeMorgan-algebra: DeMorganAlgebra, 
guard: {T}, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
top: Top, 
cand: A c∧ B, 
or: P ∨ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
names: names(I), 
nat: ℕ, 
sq_type: SQType(T), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
not: ¬A, 
bfalse: ff, 
false: False, 
lattice-1: 1, 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
eq_atom: x =a y, 
fset-singleton: {x}, 
cons: [a / b]
Lemmas referenced : 
equal_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fl_all_wf, 
lattice-1_wf, 
bdd-distributive-lattice_wf, 
add-name_wf, 
nat_wf, 
dM_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
fset_wf, 
face_lattice-induction, 
fl-morph_wf, 
nc-p_wf, 
bounded-lattice-hom_wf, 
sq_stable__all, 
sq_stable__equal, 
squash_wf, 
true_wf, 
fl-morph-0, 
iff_weakening_equal, 
fl_all-0, 
lattice-0_wf, 
fl-morph-1, 
fl0_wf, 
fl1_wf, 
names_wf, 
fl_all-join, 
fl-morph-join, 
face_lattice-1-join-irreducible, 
fl_all-meet, 
fl-morph-meet, 
lattice-meet-eq-1, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fl_all-fl0, 
eq_int_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
face-lattice-0-not-1, 
face_lattice-point-subtype, 
f-subset-add-name, 
fl_all-fl1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
independent_isectElimination, 
setElimination, 
rename, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
unionElimination, 
inlFormation, 
inrFormation, 
intEquality, 
impliesFunctionality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:Point(dM(I))].  \mforall{}[i:\mBbbN{}].  \mforall{}[v:Point(face\_lattice(I+i))].
    (((\mforall{}i.v)  =  1)  {}\mRightarrow{}  ((v)<(i/x)>  =  1))
Date html generated:
2017_10_05-AM-01_16_58
Last ObjectModification:
2017_07_28-AM-09_32_48
Theory : cubical!type!theory
Home
Index