Nuprl Lemma : nc-r'-nc-1
∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{i:ℕ| ¬i ∈ J} ].  ((i0) ⋅ f = f,i=1-j ⋅ (j1) ∈ J ⟶ I+\000Ci)
Proof
Definitions occuring in Statement : 
nc-r': g,i=1-j, 
nc-1: (i1), 
nc-0: (i0), 
add-name: I+i, 
nh-comp: g ⋅ f, 
names-hom: I ⟶ J, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
set: {x:A| B[x]} , 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
names-hom: I ⟶ J, 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nc-r': g,i=1-j, 
compose: f o g, 
nc-0: (i0), 
names: names(I), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
squash: ↓T, 
DeMorgan-algebra: DeMorganAlgebra, 
nequal: a ≠ b ∈ T , 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nc-1: (i1), 
dma-neg: ¬(x), 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
eq_atom: x =a y, 
dm-neg: ¬(x), 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
fset-singleton: {x}, 
cons: [a / b], 
nil: [], 
fset-union: x ⋃ y, 
l-union: as ⋃ bs, 
insert: insert(a;L), 
eval_list: eval_list(t), 
deq-member: x ∈b L, 
lattice-join: a ∨ b, 
opposite-lattice: opposite-lattice(L), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
so_lambda: λ2x y.t[x; y], 
lattice-meet: a ∧ b, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2), 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
lattice-fset-meet: /\(s), 
empty-fset: {}, 
lattice-1: 1, 
lattice-0: 0, 
dM0: 0
Lemmas referenced : 
names_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
names-hom_wf, 
dM0-sq-empty, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM-lift-inc, 
not-added-name, 
dM-lift_wf2, 
nc-1_wf, 
dM-point-subtype, 
f-subset-add-name, 
subtype_rel_self, 
iff_weakening_equal, 
dM-lift-nc-1, 
trivial-member-add-name1, 
nh-comp-sq, 
dM-lift-0, 
dM-lift-opp, 
dM0_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
functionExtensionality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
hypothesis, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
setIsType, 
functionIsType, 
applyEquality, 
intEquality, 
because_Cache, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
imageElimination, 
universeEquality, 
productEquality, 
isectEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J\}  ].
    ((i0)  \mcdot{}  f  =  f,i=1-j  \mcdot{}  (j1))
Date html generated:
2020_05_20-PM-01_38_03
Last ObjectModification:
2020_01_06-PM-00_12_09
Theory : cubical!type!theory
Home
Index