Nuprl Lemma : pi-comp_wf2

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
  (pi-comp(Gamma;A;B;cA;cB) ∈ I:fset(ℕ)
   ⟶ i:{i:ℕ| ¬i ∈ I} 
   ⟶ rho:Gamma(I+i)
   ⟶ phi:𝔽(I)
   ⟶ mu:{I+i,s(phi) ⊢ _:(ΠB)<rho> iota}
   ⟶ lambda:cubical-path-0(Gamma;ΠB;I;i;rho;phi;mu)
   ⟶ J:fset(ℕ)
   ⟶ f:J ⟶ I
   ⟶ u1:A(f((i1)(rho)))
   ⟶ B((f((i1)(rho));u1)))


Proof




Definitions occuring in Statement :  pi-comp: pi-comp(Gamma;A;B;cA;cB) composition-op: Gamma ⊢ CompOp(A) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-pi: ΠB cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-1: (i1) nc-s: s add-name: I+i names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B let: let cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) squash: T all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q true: True so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  pi-comp_wf1 cubical-type-at_wf cube-context-adjoin_wf cubical-type-cumulativity2 cc-adjoin-cube-restriction cc-adjoin-cube_wf equal_wf I_cube_wf cube-set-restriction-comp add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le new-name_wf nc-e'_wf nc-1_wf cube-set-restriction_wf subtype_rel_self iff_weakening_equal nh-comp_wf nc-e'-lemma1 pi-comp-nu-property cubical-path-1_wf pi-comp-nu_wf subtype_rel-equal nc-r_wf trivial-member-add-name1 nc-r'_wf squash_wf true_wf istype-universe names-hom_wf fset_wf nat_wf nc-r'-r face-presheaf_wf2 pi-comp-app_wf cubical-path-0_wf cubical-pi_wf cubical-term_wf cubical-subset_wf nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality functionExtensionality applyEquality sqequalRule lambdaEquality_alt setElimination rename instantiate imageElimination because_Cache Error :memTop,  dependent_functionElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality independent_pairFormation universeIsType voidElimination inhabitedIsType equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality productElimination hyp_replacement setEquality intEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].
    (pi-comp(Gamma;A;B;cA;cB)  \mmember{}  I:fset(\mBbbN{})
      {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
      {}\mrightarrow{}  rho:Gamma(I+i)
      {}\mrightarrow{}  phi:\mBbbF{}(I)
      {}\mrightarrow{}  mu:\{I+i,s(phi)  \mvdash{}  \_:(\mPi{}A  B)<rho>  o  iota\}
      {}\mrightarrow{}  lambda:cubical-path-0(Gamma;\mPi{}A  B;I;i;rho;phi;mu)
      {}\mrightarrow{}  J:fset(\mBbbN{})
      {}\mrightarrow{}  f:J  {}\mrightarrow{}  I
      {}\mrightarrow{}  u1:A(f((i1)(rho)))
      {}\mrightarrow{}  B((f((i1)(rho));u1)))



Date html generated: 2020_05_20-PM-03_59_54
Last ObjectModification: 2020_04_10-PM-03_03_26

Theory : cubical!type!theory


Home Index