Nuprl Lemma : rn-ip_wf
∀[n:{2...}]. (ipℝ^n ∈ InnerProductSpace)
Proof
Definitions occuring in Statement : 
rn-ip: ipℝ^n, 
inner-product-space: InnerProductSpace, 
int_upper: {i...}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
int_upper: {i...}, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
rn-ip: ipℝ^n, 
rv-n: vecℝ^n, 
ss-point: Error :ss-point, 
ss-eq: Error :ss-eq, 
rn-ss: sepℝ^n, 
mk-real-vector-space: mk-real-vector-space, 
ss-sep: Error :ss-sep, 
top: Top, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
mk-ss: Error :mk-ss, 
btrue: tt, 
rv-mul: a*x, 
rv-add: x + y, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
cand: A c∧ B, 
rv-0: 0, 
so_lambda: λ2x.t[x], 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q)
Lemmas referenced : 
rv-n_wf, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
mk-inner-product-space_wf, 
rec_select_update_lemma, 
istype-void, 
dot-product_wf, 
real-vec_wf, 
upper_subtype_nat, 
istype-false, 
real-vec-sep_wf, 
dot-product-comm, 
dot-product-linearity1, 
dot-product-linearity2, 
real_wf, 
req_wf, 
real-vec-add_wf, 
radd_wf, 
real-vec-mul_wf, 
rmul_wf, 
real-vec-sep-0-iff, 
subtype_rel_self, 
all_wf, 
iff_wf, 
int-to-real_wf, 
int_seg_wf, 
rless_wf, 
real-vec-perp-exists, 
int_upper_wf, 
exists_wf, 
istype-int_upper, 
not-real-vec-sep-iff-eq, 
dot-product_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
because_Cache, 
inhabitedIsType, 
applyEquality, 
lambdaFormation_alt, 
functionIsType, 
productElimination, 
productIsType, 
instantiate, 
functionEquality, 
closedConclusion, 
productEquality, 
axiomEquality
Latex:
\mforall{}[n:\{2...\}].  (ip\mBbbR{}\^{}n  \mmember{}  InnerProductSpace)
Date html generated:
2020_05_20-PM-01_10_56
Last ObjectModification:
2019_12_10-AM-00_34_43
Theory : inner!product!spaces
Home
Index