Nuprl Lemma : trans-apply-sep
∀rv:InnerProductSpace. ∀T:ℝ ⟶ Point ⟶ Point.
  ((∃e:Point. translation-group-fun(rv;e;T)) ⇒ (∀x:Point. ∀t1,t2:ℝ.  (t1 ≠ t2 ⇒ T_t2(x) # T_t1(x))))
Proof
Definitions occuring in Statement : 
trans-apply: T_t(x), 
translation-group-fun: translation-group-fun(rv;e;T), 
inner-product-space: InnerProductSpace, 
rneq: x ≠ y, 
real: ℝ, 
ss-sep: x # y, 
ss-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
translation-group-fun: translation-group-fun(rv;e;T), 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
iff: P ⇐⇒ Q, 
not: ¬A, 
trans-apply: T_t(x), 
ss-eq: x ≡ y, 
false: False, 
rev_implies: P ⇐ Q, 
rneq: x ≠ y, 
or: P ∨ Q, 
req_int_terms: t1 ≡ t2, 
top: Top
Lemmas referenced : 
trans-apply_wf, 
real_wf, 
int-to-real_wf, 
rneq_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
exists_wf, 
translation-group-fun_wf, 
ss-eq_wf, 
rv-add_wf, 
rv-mul_wf, 
rv-0_wf, 
uiff_transitivity, 
ss-eq_functionality, 
rv-add_functionality, 
ss-eq_weakening, 
rv-mul0, 
rv-0-add, 
ss-sep_functionality, 
not-rneq, 
trans-apply-0, 
rneq_functionality, 
req_weakening, 
req_inversion, 
rneq-symmetry, 
rless-implies-rless, 
rsub_wf, 
rless_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
radd_wf, 
ss-eq_inversion, 
trans-apply-add, 
itermAdd_wf, 
trans-apply_functionality, 
real_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
addLevel, 
dependent_functionElimination, 
introduction, 
extract_by_obid, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
isectElimination, 
natural_numberEquality, 
levelHypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
lambdaEquality, 
functionEquality, 
independent_functionElimination, 
allFunctionality, 
promote_hyp, 
dependent_pairFormation, 
voidElimination, 
unionElimination, 
inlFormation, 
inrFormation, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    ((\mexists{}e:Point.  translation-group-fun(rv;e;T))
    {}\mRightarrow{}  (\mforall{}x:Point.  \mforall{}t1,t2:\mBbbR{}.    (t1  \mneq{}  t2  {}\mRightarrow{}  T\_t2(x)  \#  T\_t1(x))))
Date html generated:
2017_10_05-AM-00_21_50
Last ObjectModification:
2017_06_26-PM-06_56_05
Theory : inner!product!spaces
Home
Index