Nuprl Lemma : rat-complex-boundary-iter-subdiv-polyhedron

[k,n:ℕ]. ∀[K:n-dim-complex]. ∀[j:ℕ].  |∂(K'^(j))| ≡ |∂(K)|


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| nat: ext-eq: A ≡ B uall: [x:A]. B[x] rat-complex-boundary: (K) rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  cand: c∧ B rational-cube-complex: n-dim-complex less_than': less_than'(a;b) le: A ≤ B prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B and: P ∧ Q ext-eq: A ≡ B guard: {T} implies:  Q sq_type: SQType(T) uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  Error :rat-complex-boundary-iter-subdiv,  permutation_inversion rat-cube-complex-polyhedron_wf subtype_rel_transitivity rat-complex-boundary_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf rat-complex-iter-subdiv-polyhedron rat-cube-complex-polyhedron_functionality permutation-nil rational-cube_wf nil_wf Error :rat-complex-iter-subdiv_wf,  subtype_rel_self istype-le int_formula_prop_le_lemma intformle_wf decidable__le int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat nat_properties le_wf set_subtype_base nat_wf rat-complex-boundary-0-dim istype-nat rational-cube-complex_wf int_subtype_base subtype_base_sq decidable__equal_int
Rules used in proof :  lambdaFormation_alt dependent_set_memberEquality_alt independent_pairFormation voidElimination int_eqEquality dependent_pairFormation_alt approximateComputation equalitySymmetry equalityTransitivity lambdaEquality_alt applyEquality universeIsType isectIsTypeImplies isect_memberEquality_alt inhabitedIsType axiomEquality independent_pairEquality productElimination sqequalRule independent_functionElimination because_Cache independent_isectElimination intEquality cumulativity isectElimination instantiate unionElimination natural_numberEquality hypothesis hypothesisEquality rename setElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].  \mforall{}[j:\mBbbN{}].    |\mpartial{}(K'\^{}(j))|  \mequiv{}  |\mpartial{}(K)|



Date html generated: 2019_11_04-PM-04_43_50
Last ObjectModification: 2019_11_02-PM-10_52_41

Theory : real!vectors


Home Index