Nuprl Lemma : rat-complex-iter-subdiv-polyhedron

[k,n:ℕ]. ∀[K:n-dim-complex]. ∀[j:ℕ].  |K'^(j)| ≡ |K|


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| nat: ext-eq: A ≡ B uall: [x:A]. B[x] rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  cand: c∧ B decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q assert: b ifthenelse: if then else fi  bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q bfalse: ff uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 rational-cube-complex: n-dim-complex istype: istype(T) rat-complex-iter-subdiv: Error :rat-complex-iter-subdiv,  subtype_rel: A ⊆B ext-eq: A ≡ B prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rat-complex-subdiv_wf subtype_rel_transitivity istype-le int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf decidable__le subtract_wf Error :rat-complex-iter-subdiv_wf,  rat-complex-subdiv-polyhedron less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf primrec-unroll rat-cube-complex-polyhedron_wf primrec0_lemma istype-nat rational-cube-complex_wf subtract-1-ge-0 istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties
Rules used in proof :  applyEquality dependent_set_memberEquality_alt cumulativity instantiate promote_hyp equalityIstype because_Cache equalitySymmetry equalityTransitivity equalityElimination unionElimination isectIsTypeImplies inhabitedIsType functionIsTypeImplies axiomEquality independent_pairEquality productElimination universeIsType independent_pairFormation sqequalRule voidElimination isect_memberEquality_alt dependent_functionElimination int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation_alt intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].  \mforall{}[j:\mBbbN{}].    |K'\^{}(j)|  \mequiv{}  |K|



Date html generated: 2019_11_04-PM-04_43_47
Last ObjectModification: 2019_10_31-AM-11_12_25

Theory : real!vectors


Home Index