Nuprl Lemma : rat-complex-iter-subdiv-polyhedron
∀[k,n:ℕ]. ∀[K:n-dim-complex]. ∀[j:ℕ].  |K'^(j)| ≡ |K|
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|
, 
nat: ℕ
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
cand: A c∧ B
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
rational-cube-complex: n-dim-complex
, 
istype: istype(T)
, 
rat-complex-iter-subdiv: Error :rat-complex-iter-subdiv, 
subtype_rel: A ⊆r B
, 
ext-eq: A ≡ B
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rat-complex-subdiv_wf, 
subtype_rel_transitivity, 
istype-le, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
decidable__le, 
subtract_wf, 
Error :rat-complex-iter-subdiv_wf, 
rat-complex-subdiv-polyhedron, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
primrec-unroll, 
rat-cube-complex-polyhedron_wf, 
primrec0_lemma, 
istype-nat, 
rational-cube-complex_wf, 
subtract-1-ge-0, 
istype-less_than, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties
Rules used in proof : 
applyEquality, 
dependent_set_memberEquality_alt, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityIstype, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
axiomEquality, 
independent_pairEquality, 
productElimination, 
universeIsType, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
isect_memberEquality_alt, 
dependent_functionElimination, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation_alt, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].  \mforall{}[j:\mBbbN{}].    |K'\^{}(j)|  \mequiv{}  |K|
Date html generated:
2019_11_04-PM-04_43_47
Last ObjectModification:
2019_10_31-AM-11_12_25
Theory : real!vectors
Home
Index