Nuprl Lemma : Cauchy-Schwarz2

[n:ℕ]. ∀[x,y:ℕn ⟶ ℝ].
  ((Σ{x[i] y[i] 0≤i≤1} * Σ{x[i] y[i] 0≤i≤1}) ≤ {x[i] x[i] 0≤i≤1}
  * Σ{y[i] y[i] 0≤i≤1}))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y rmul: b real: int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q not: ¬A false: False so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k nat_plus: + ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: subtype_rel: A ⊆B subtract: m less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  le_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma intformeq_wf itermSubtract_wf itermConstant_wf intformle_wf decidable__le subtract_wf Cauchy-Schwarz1 rsum-empty int-to-real_wf rleq_weakening_equal nat_wf real_wf nat_plus_wf int_seg_wf lelt_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties nat_plus_properties subtract-add-cancel rsum_wf rmul_wf rsub_wf less_than'_wf int_subtype_base subtype_base_sq decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality natural_numberEquality hypothesis unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination sqequalRule lambdaEquality productElimination independent_pairEquality applyEquality dependent_set_memberEquality independent_pairFormation dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll addEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality imageMemberEquality baseClosed

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}].
    ((\mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\}  *  \mSigma{}\{x[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\})  \mleq{}  (\mSigma{}\{x[i]  *  x[i]  |  0\mleq{}i\mleq{}n  -  1\}
    *  \mSigma{}\{y[i]  *  y[i]  |  0\mleq{}i\mleq{}n  -  1\}))



Date html generated: 2016_05_18-AM-07_51_47
Last ObjectModification: 2016_01_17-AM-02_17_28

Theory : reals


Home Index