Nuprl Lemma : cantor-middle-third-lemma

x,a,b:ℝ.  ((x ∈ [(2 b)/3, b]) ∨ (x ∈ [a, (a b)/3])) supposing ((x ∈ [a, b]) and (a < b))


Proof




Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I rless: x < y int-rdiv: (a)/k1 int-rmul: k1 a radd: b real: uimplies: supposing a all: x:A. B[x] or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a i-member: r ∈ I rccint: [l, u] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q sq_type: SQType(T) guard: {T} false: False prop: or: P ∨ Q cand: c∧ B rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q) sq_stable: SqStable(P)
Lemmas referenced :  rless-cases int-rdiv_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf radd_wf int-rmul_wf rleq_weakening_rless rleq_wf i-member_wf rccint_wf rless_wf real_wf rdiv_wf int-to-real_wf rless-int rmul_wf rmul_preserves_rless rinv_wf2 rless_functionality int-rdiv-req rdiv_functionality radd_functionality req_weakening int-rmul-req req_transitivity real_term_polynomial itermSubtract_wf itermMultiply_wf itermAdd_wf itermConstant_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul-rinv3 rmul_functionality radd-preserves-rless rminus_wf itermMinus_wf real_term_value_minus_lemma rless-implies-rless rsub_wf sq_stable__rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution sqequalRule cut introduction extract_by_obid dependent_functionElimination thin productElimination isectElimination dependent_set_memberEquality natural_numberEquality addLevel instantiate cumulativity intEquality independent_isectElimination hypothesis equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed hypothesisEquality because_Cache unionElimination inlFormation independent_pairFormation productEquality inrFormation imageMemberEquality computeAll lambdaEquality int_eqEquality isect_memberEquality voidEquality lemma_by_obid imageElimination

Latex:
\mforall{}x,a,b:\mBbbR{}.
    ((x  \mmember{}  [(2  *  a  +  b)/3,  b])  \mvee{}  (x  \mmember{}  [a,  (a  +  2  *  b)/3]))  supposing  ((x  \mmember{}  [a,  b])  and  (a  <  b))



Date html generated: 2017_10_03-AM-09_47_48
Last ObjectModification: 2017_07_28-AM-08_00_11

Theory : reals


Home Index