Nuprl Lemma : firstn-partition

I:Interval
  (icompact(I)  (∀a:ℝ. ∀p:partition(I). ∀i:ℕ||p||.  ((a p[i])  (firstn(i;p) ∈ partition([left-endpoint(I), a])))))


Proof




Definitions occuring in Statement :  partition: partition(I) icompact: icompact(I) rccint: [l, u] left-endpoint: left-endpoint(I) interval: Interval req: y real: firstn: firstn(n;as) select: L[n] length: ||as|| int_seg: {i..j-} all: x:A. B[x] implies:  Q member: t ∈ T natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T partition: partition(I) uall: [x:A]. B[x] int_seg: {i..j-} partitions: partitions(I;p) and: P ∧ Q guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: iff: ⇐⇒ Q icompact: icompact(I) cand: c∧ B frs-non-dec: frs-non-dec(L) subtype_rel: A ⊆B int_iseg: {i...j} so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  le: A ≤ B less_than': less_than'(a;b) left-endpoint: left-endpoint(I) endpoints: endpoints(I) rccint: [l, u] outl: outl(x) pi1: fst(t) right-endpoint: right-endpoint(I) pi2: snd(t) assert: b ifthenelse: if then else fi  btrue: tt cons: [a b] bfalse: ff last: last(L) rev_implies:  Q sq_type: SQType(T) sorted-by: sorted-by(R;L)
Lemmas referenced :  firstn_wf real_wf int_seg_properties length_wf decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf partitions_wf rccint_wf left-endpoint_wf rccint-icompact req_wf select_wf decidable__le int_seg_wf partition_wf icompact_wf interval_wf less_than_wf non_neg_length length_firstn_eq subtype_rel_sets lelt_wf le_wf intformeq_wf int_formula_prop_eq_lemma subtype_rel_list top_wf int_seg_subtype_nat false_wf length_firstn select-firstn rleq_transitivity last_wf list_wf list-cases null_nil_lemma length_of_nil_lemma left_endpoint_rccint_lemma product_subtype_list null_cons_lemma length_of_cons_lemma equal_wf req_inversion rleq_weakening subtract_wf itermSubtract_wf int_term_value_subtract_lemma frs-non-dec-sorted-by decidable__equal_int subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality introduction extract_by_obid isectElimination hypothesis hypothesisEquality productElimination independent_functionElimination natural_numberEquality dependent_functionElimination unionElimination imageElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll because_Cache applyEquality productEquality setEquality applyLambdaEquality equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption instantiate cumulativity

Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}a:\mBbbR{}.  \mforall{}p:partition(I).  \mforall{}i:\mBbbN{}||p||.
                ((a  =  p[i])  {}\mRightarrow{}  (firstn(i;p)  \mmember{}  partition([left-endpoint(I),  a])))))



Date html generated: 2017_10_03-AM-09_42_30
Last ObjectModification: 2017_07_28-AM-07_57_12

Theory : reals


Home Index