Nuprl Lemma : firstn-partition
∀I:Interval
  (icompact(I) 
⇒ (∀a:ℝ. ∀p:partition(I). ∀i:ℕ||p||.  ((a = p[i]) 
⇒ (firstn(i;p) ∈ partition([left-endpoint(I), a])))))
Proof
Definitions occuring in Statement : 
partition: partition(I)
, 
icompact: icompact(I)
, 
rccint: [l, u]
, 
left-endpoint: left-endpoint(I)
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
firstn: firstn(n;as)
, 
select: L[n]
, 
length: ||as||
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
partition: partition(I)
, 
uall: ∀[x:A]. B[x]
, 
int_seg: {i..j-}
, 
partitions: partitions(I;p)
, 
and: P ∧ Q
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
icompact: icompact(I)
, 
cand: A c∧ B
, 
frs-non-dec: frs-non-dec(L)
, 
subtype_rel: A ⊆r B
, 
int_iseg: {i...j}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
left-endpoint: left-endpoint(I)
, 
endpoints: endpoints(I)
, 
rccint: [l, u]
, 
outl: outl(x)
, 
pi1: fst(t)
, 
right-endpoint: right-endpoint(I)
, 
pi2: snd(t)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
bfalse: ff
, 
last: last(L)
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
sorted-by: sorted-by(R;L)
Lemmas referenced : 
firstn_wf, 
real_wf, 
int_seg_properties, 
length_wf, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
partitions_wf, 
rccint_wf, 
left-endpoint_wf, 
rccint-icompact, 
req_wf, 
select_wf, 
decidable__le, 
int_seg_wf, 
partition_wf, 
icompact_wf, 
interval_wf, 
less_than_wf, 
non_neg_length, 
length_firstn_eq, 
subtype_rel_sets, 
lelt_wf, 
le_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtype_rel_list, 
top_wf, 
int_seg_subtype_nat, 
false_wf, 
length_firstn, 
select-firstn, 
rleq_transitivity, 
last_wf, 
list_wf, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
left_endpoint_rccint_lemma, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
equal_wf, 
req_inversion, 
rleq_weakening, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
frs-non-dec-sorted-by, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
because_Cache, 
applyEquality, 
productEquality, 
setEquality, 
applyLambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
instantiate, 
cumulativity
Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}a:\mBbbR{}.  \mforall{}p:partition(I).  \mforall{}i:\mBbbN{}||p||.
                ((a  =  p[i])  {}\mRightarrow{}  (firstn(i;p)  \mmember{}  partition([left-endpoint(I),  a])))))
Date html generated:
2017_10_03-AM-09_42_30
Last ObjectModification:
2017_07_28-AM-07_57_12
Theory : reals
Home
Index