Nuprl Lemma : full-partition-non-dec
∀[I:Interval]. ∀[p:partition(I)]. frs-non-dec(full-partition(I;p)) supposing icompact(I)
Proof
Definitions occuring in Statement : 
full-partition: full-partition(I;p)
, 
partition: partition(I)
, 
frs-non-dec: frs-non-dec(L)
, 
icompact: icompact(I)
, 
interval: Interval
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
full-partition: full-partition(I;p)
, 
partition: partition(I)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
frs-non-dec: frs-non-dec(L)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
icompact: icompact(I)
, 
sq_stable: SqStable(P)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
partitions: partitions(I;p)
, 
rbetween: x≤y≤z
Lemmas referenced : 
frs-non-dec-sorted-by, 
cons_wf, 
real_wf, 
left-endpoint_wf, 
append_wf, 
right-endpoint_wf, 
nil_wf, 
sorted-by-cons, 
rleq_wf, 
less_than'_wf, 
rsub_wf, 
select_wf, 
full-partition_wf, 
nat_plus_properties, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
nat_plus_wf, 
le_wf, 
int_seg_wf, 
partition_wf, 
icompact_wf, 
interval_wf, 
sorted-by-append, 
sq_stable__frs-non-dec, 
sorted-by-single, 
l_member_wf, 
l_all_single, 
equal_wf, 
l_all_iff, 
l_all_wf2, 
all_wf, 
sq_stable__rleq, 
i-member-compact, 
partition-point-member, 
i-member_wf, 
partitions_wf, 
l_all_append, 
icompact-endpoints-rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
independent_functionElimination, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairFormation, 
sqequalRule, 
independent_pairEquality, 
applyEquality, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageElimination, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
lambdaFormation, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
setEquality, 
levelHypothesis, 
allLevelFunctionality, 
impliesLevelFunctionality, 
functionEquality, 
dependent_set_memberEquality, 
andLevelFunctionality, 
productEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[p:partition(I)].  frs-non-dec(full-partition(I;p))  supposing  icompact(I)
Date html generated:
2017_10_03-AM-09_40_27
Last ObjectModification:
2017_07_28-AM-07_55_55
Theory : reals
Home
Index