Nuprl Lemma : full-partition-non-dec

[I:Interval]. ∀[p:partition(I)]. frs-non-dec(full-partition(I;p)) supposing icompact(I)


Proof




Definitions occuring in Statement :  full-partition: full-partition(I;p) partition: partition(I) frs-non-dec: frs-non-dec(L) icompact: icompact(I) interval: Interval uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a full-partition: full-partition(I;p) partition: partition(I) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] cand: c∧ B frs-non-dec: frs-non-dec(L) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False int_seg: {i..j-} nat_plus: + guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B icompact: icompact(I) sq_stable: SqStable(P) so_lambda: λ2x.t[x] so_apply: x[s] partitions: partitions(I;p) rbetween: x≤y≤z
Lemmas referenced :  frs-non-dec-sorted-by cons_wf real_wf left-endpoint_wf append_wf right-endpoint_wf nil_wf sorted-by-cons rleq_wf less_than'_wf rsub_wf select_wf full-partition_wf nat_plus_properties int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma nat_plus_wf le_wf int_seg_wf partition_wf icompact_wf interval_wf sorted-by-append sq_stable__frs-non-dec sorted-by-single l_member_wf l_all_single equal_wf l_all_iff l_all_wf2 all_wf sq_stable__rleq i-member-compact partition-point-member i-member_wf partitions_wf l_all_append icompact-endpoints-rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality independent_isectElimination because_Cache setElimination rename productElimination independent_functionElimination lambdaEquality dependent_functionElimination independent_pairFormation sqequalRule independent_pairEquality applyEquality natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination minusEquality axiomEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed lambdaFormation addLevel allFunctionality impliesFunctionality setEquality levelHypothesis allLevelFunctionality impliesLevelFunctionality functionEquality dependent_set_memberEquality andLevelFunctionality productEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[p:partition(I)].  frs-non-dec(full-partition(I;p))  supposing  icompact(I)



Date html generated: 2017_10_03-AM-09_40_27
Last ObjectModification: 2017_07_28-AM-07_55_55

Theory : reals


Home Index