Nuprl Lemma : imonomial-nonneg-lemma
∀[k:ℕ+]. ∀[m,m':iMonomial()].
  ∀f:ℤ ⟶ ℝ. (r0 ≤ real_term_value(f;imonomial-term(m))) supposing mul-monomials(m';m') = mul-monomials(m;<k, []>) ∈ iMo\000Cnomial()
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
real_term_value: real_term_value(f;t)
, 
int-to-real: r(n)
, 
real: ℝ
, 
mul-monomials: mul-monomials(m1;m2)
, 
imonomial-term: imonomial-term(m)
, 
iMonomial: iMonomial()
, 
nil: []
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iMonomial: iMonomial()
, 
subtype_rel: A ⊆r B
, 
sorted: sorted(L)
, 
all: ∀x:A. B[x]
, 
select: L[n]
, 
uimplies: b supposing a
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
true: True
, 
int_nzero: ℤ-o
, 
req_int_terms: t1 ≡ t2
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
imonomial-term: imonomial-term(m)
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
nat_plus_inc_int_nzero, 
nil_wf, 
stuck-spread, 
istype-base, 
istype-void, 
length_of_nil_lemma, 
int_seg_properties, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
intformnot_wf, 
int_formula_prop_not_lemma, 
int_seg_wf, 
sorted_wf, 
real_wf, 
le_witness_for_triv, 
mul-monomials_wf, 
nat_plus_wf, 
itermMultiply_wf, 
imonomial-term_wf, 
mul-monomials-req, 
real_term_value_mul_lemma, 
req_int_terms_wf, 
squash_wf, 
true_wf, 
int_term_wf, 
list_wf, 
subtype_rel_product, 
int_nzero_wf, 
subtype_rel_self, 
iff_weakening_equal, 
req_int_terms_functionality, 
req_int_terms_weakening, 
real_term_value_wf, 
list_accum_nil_lemma, 
real_term_value_const_lemma, 
req_wf, 
rmul_wf, 
int-to-real_wf, 
rmul_preserves_rleq, 
rless-int, 
decidable__lt, 
itermSubtract_wf, 
rleq_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
req_functionality, 
req_weakening, 
square-nonneg, 
req_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
independent_pairEquality, 
hypothesisEquality, 
applyEquality, 
thin, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_set_memberEquality_alt, 
isectElimination, 
intEquality, 
lambdaFormation_alt, 
baseClosed, 
independent_isectElimination, 
isect_memberEquality_alt, 
voidElimination, 
setElimination, 
rename, 
productElimination, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
unionElimination, 
functionIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
equalityIstype, 
isectIsTypeImplies, 
productIsType, 
setEquality, 
closedConclusion, 
setIsType, 
imageMemberEquality, 
instantiate, 
universeEquality
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[m,m':iMonomial()].
    \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.  (r0  \mleq{}  real\_term\_value(f;imonomial-term(m))) 
    supposing  mul-monomials(m';m')  =  mul-monomials(m;<k,  []>)
Date html generated:
2019_10_29-AM-10_07_56
Last ObjectModification:
2019_04_08-PM-04_11_39
Theory : reals
Home
Index