Nuprl Lemma : imonomial-nonneg-lemma

[k:ℕ+]. ∀[m,m':iMonomial()].
  ∀f:ℤ ⟶ ℝ(r0 ≤ real_term_value(f;imonomial-term(m))) supposing mul-monomials(m';m') mul-monomials(m;<k, []>) ∈ iMo\000Cnomial()


Proof




Definitions occuring in Statement :  rleq: x ≤ y real_term_value: real_term_value(f;t) int-to-real: r(n) real: mul-monomials: mul-monomials(m1;m2) imonomial-term: imonomial-term(m) iMonomial: iMonomial() nil: [] nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] pair: <a, b> natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iMonomial: iMonomial() subtype_rel: A ⊆B sorted: sorted(L) all: x:A. B[x] select: L[n] uimplies: supposing a nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T nat_plus: + not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: decidable: Dec(P) or: P ∨ Q rleq: x ≤ y rnonneg: rnonneg(x) true: True int_nzero: -o req_int_terms: t1 ≡ t2 so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} iff: ⇐⇒ Q uiff: uiff(P;Q) imonomial-term: imonomial-term(m) rev_implies:  Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_plus_inc_int_nzero nil_wf stuck-spread istype-base istype-void length_of_nil_lemma int_seg_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformless_wf itermVar_wf intformle_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf intformnot_wf int_formula_prop_not_lemma int_seg_wf sorted_wf real_wf le_witness_for_triv mul-monomials_wf nat_plus_wf itermMultiply_wf imonomial-term_wf mul-monomials-req real_term_value_mul_lemma req_int_terms_wf squash_wf true_wf int_term_wf list_wf subtype_rel_product int_nzero_wf subtype_rel_self iff_weakening_equal req_int_terms_functionality req_int_terms_weakening real_term_value_wf list_accum_nil_lemma real_term_value_const_lemma req_wf rmul_wf int-to-real_wf rmul_preserves_rleq rless-int decidable__lt itermSubtract_wf rleq_functionality req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma req_functionality req_weakening square-nonneg req_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule independent_pairEquality hypothesisEquality applyEquality thin extract_by_obid hypothesis sqequalHypSubstitution dependent_set_memberEquality_alt isectElimination intEquality lambdaFormation_alt baseClosed independent_isectElimination isect_memberEquality_alt voidElimination setElimination rename productElimination imageElimination dependent_functionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation universeIsType because_Cache unionElimination functionIsType equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType equalityIstype isectIsTypeImplies productIsType setEquality closedConclusion setIsType imageMemberEquality instantiate universeEquality

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[m,m':iMonomial()].
    \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.  (r0  \mleq{}  real\_term\_value(f;imonomial-term(m))) 
    supposing  mul-monomials(m';m')  =  mul-monomials(m;<k,  []>)



Date html generated: 2019_10_29-AM-10_07_56
Last ObjectModification: 2019_04_08-PM-04_11_39

Theory : reals


Home Index