Nuprl Lemma : m-k-regular-mcauchy
∀[X:Type]. ∀[d:metric(X)]. ∀[s:ℕ ⟶ X].  ∀b:ℕ+. (m-k-regular(d;b;s) 
⇒ mcauchy(d;n.s n))
Proof
Definitions occuring in Statement : 
m-k-regular: m-k-regular(d;k;s)
, 
mcauchy: mcauchy(d;n.x[n])
, 
metric: metric(X)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
m-k-regular: m-k-regular(d;k;s)
, 
mcauchy: mcauchy(d;n.x[n])
, 
sq_exists: ∃x:A [B[x]]
, 
member: t ∈ T
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
uiff: uiff(P;Q)
Lemmas referenced : 
multiply_nat_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
rleq_wf, 
mdist_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
decidable__lt, 
rless_wf, 
m-k-regular_wf, 
nat_plus_wf, 
istype-nat, 
metric_wf, 
istype-universe, 
radd_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
implies_weakening_uimplies, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq-int-fractions, 
istype-less_than, 
mul_bounds_1b, 
mul_nat_plus, 
radd_functionality_wrt_rleq, 
rleq_functionality, 
radd-int-fractions, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
dependent_set_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
functionIsType, 
applyEquality, 
closedConclusion, 
inrFormation_alt, 
productElimination, 
instantiate, 
universeEquality, 
addEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[s:\mBbbN{}  {}\mrightarrow{}  X].    \mforall{}b:\mBbbN{}\msupplus{}.  (m-k-regular(d;b;s)  {}\mRightarrow{}  mcauchy(d;n.s  n))
Date html generated:
2019_10_30-AM-06_59_08
Last ObjectModification:
2019_10_09-AM-08_53_30
Theory : reals
Home
Index