Nuprl Lemma : m-k-regular-mcauchy

[X:Type]. ∀[d:metric(X)]. ∀[s:ℕ ⟶ X].  ∀b:ℕ+(m-k-regular(d;b;s)  mcauchy(d;n.s n))


Proof




Definitions occuring in Statement :  m-k-regular: m-k-regular(d;k;s) mcauchy: mcauchy(d;n.x[n]) metric: metric(X) nat_plus: + nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q m-k-regular: m-k-regular(d;k;s) mcauchy: mcauchy(d;n.x[n]) sq_exists: x:A [B[x]] member: t ∈ T nat: nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y uiff: uiff(P;Q)
Lemmas referenced :  multiply_nat_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le rleq_wf mdist_wf rdiv_wf int-to-real_wf rless-int nat_properties decidable__lt rless_wf m-k-regular_wf nat_plus_wf istype-nat metric_wf istype-universe radd_wf itermAdd_wf int_term_value_add_lemma implies_weakening_uimplies rleq_functionality_wrt_implies rleq_weakening_equal rleq-int-fractions istype-less_than mul_bounds_1b mul_nat_plus radd_functionality_wrt_rleq rleq_functionality radd-int-fractions req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution dependent_set_memberFormation_alt cut introduction extract_by_obid isectElimination thin dependent_set_memberEquality_alt multiplyEquality natural_numberEquality setElimination rename because_Cache hypothesis hypothesisEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType functionIsType applyEquality closedConclusion inrFormation_alt productElimination instantiate universeEquality addEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[s:\mBbbN{}  {}\mrightarrow{}  X].    \mforall{}b:\mBbbN{}\msupplus{}.  (m-k-regular(d;b;s)  {}\mRightarrow{}  mcauchy(d;n.s  n))



Date html generated: 2019_10_30-AM-06_59_08
Last ObjectModification: 2019_10_09-AM-08_53_30

Theory : reals


Home Index