Nuprl Lemma : mconverges-to_functionality

[X:Type]. ∀d:metric(X). ∀x1,x2:ℕ ⟶ X.  ∀[y:X]. {lim n→∞.x1[n]  lim n→∞.x2[n] y} supposing ∀n:ℕx1[n] ≡ x2[n]


Proof




Definitions occuring in Statement :  mconverges-to: lim n→∞.x[n] y meq: x ≡ y metric: metric(X) nat: uimplies: supposing a uall: [x:A]. B[x] guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T meq: x ≡ y metric: metric(X) so_apply: x[s] implies:  Q mconverges-to: lim n→∞.x[n] y nat_plus: + rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q sq_exists: x:A [B[x]] nat: ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_lambda: λ2x.t[x]
Lemmas referenced :  req_witness int-to-real_wf rdiv_wf rless-int nat_properties nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf req_inversion mdist_wf rleq_transitivity rleq_weakening istype-le rleq_wf nat_plus_wf mconverges-to_wf istype-nat meq_wf metric_wf istype-universe meq-same mdist_functionality
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation_alt cut introduction sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality setElimination rename hypothesis natural_numberEquality independent_functionElimination functionIsTypeImplies inhabitedIsType closedConclusion because_Cache independent_isectElimination inrFormation_alt productElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType promote_hyp dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry functionIsType instantiate universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}x1,x2:\mBbbN{}  {}\mrightarrow{}  X.
        \mforall{}[y:X].  \{lim  n\mrightarrow{}\minfty{}.x1[n]  =  y  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x2[n]  =  y\}  supposing  \mforall{}n:\mBbbN{}.  x1[n]  \mequiv{}  x2[n]



Date html generated: 2019_10_30-AM-06_38_26
Last ObjectModification: 2019_10_02-AM-10_51_25

Theory : reals


Home Index